Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Га8 многоатомный

Молекула одноатомного газа имеет три степени свободы соответственно трем составляющим в направлении координатных осей, на которые может быть разложено поступательное движение. Молекула двухатомного газа имеет пять степеней свободы, так как помимо поступательного движения она может вращаться около двух осей, перпендикулярных линии, соединяющей атомы (энергия вращения вокруг оси, соединяющей атомы, равна нулю, если атомы считать точками). Молекула трехатомного и вообще многоатомного газа имеет щесть степеней свободы три поступательных и три вращательных.  [c.16]


Вращательная сумма состояний для многоатомной нелинейной жесткой молекулы может быть представлена аналогичным выражением  [c.108]

Какова средняя энергия нелинейного многоатомного жесткого ротатора  [c.113]

Дифференцирование уравнения (4-7) по температуре при постоянном объеме дает классическую вращательную составляющую мольной теплоемкости для жесткой нелинейной многоатомной молекулы  [c.121]

Наблюдение характеристических частот связи приводит к представлению о колебаниях растяжения связей и о колебаниях в изгибании связей. Колебание растяжения связей рассматривается как периодическое изменение длины связи, и колебание изгибания рассматривается как периодическое изменение угла связи. Эта классификация имеет большое значение в тех случаях, когда молекула содержит только несколько атомов и не применима к сложным многоатомным молекулам.  [c.125]

Произведения главных моментов инерции нелинейной жесткой многоатомной молекулы наиболее удобно вычислить с помощью следующего выражения  [c.136]

Модель молекулы строится на основе известных величин длин и углов связи. Для большинства многоатомных молекул возможно несколько молекулярных моделей с мало отличающимися величинами момента инерции. Любая модель, построенная на основе принятых длин связи и углов, будет пригодна для целей вычисления энтропии.  [c.137]

Вращательная составляющая энтропии для нелинейной многоатомной молекулы при 298 °К выражена уравнением (4-53), а произведение моментов инерции — уравнением (4-58). На рис. 17  [c.143]

Кубическая сложная многоатомная То же  [c.56]

Синтезируются эти соединения при взаимодействии (поликонденсации) сложных эфиров двухосновных кислот с многоатомными спиртами (гликолями) обладают они высокими эксплуатационными качествами до 300° С применяют их как теплостойкие диэлектрики и для конструкционных композиций. Различают термопластичные и термореактивные полиэфирные смолы.  [c.368]

Молекулы трех- и многоатомных газов имеют три степени свободы поступательного движения и три степени свободы вращения движения, а всего i --= 6.  [c.73]

Учет энергии колебательного движения атомов в молекуле дается квантовой теорией теплоемкостей. Эта теория доказывает, что теплоемкость двух- и многоатомных газов является функцией температуры, так как энергия колебательного движения атомов в молекуле изменяется не пропорционально повышению температуры.  [c.76]

Для приближенных расчетов при не очень высоких температурах можно рекомендовать использование постоянных мольных теплоемкостей 1Су и [хСр, полученных, с некоторой корректировкой для трех- и многоатомных газов, на основании молекулярно-кинетической теории теплоемкости. Эти данные приведены в табл. 6-1.  [c.76]


Излучение газообразных тел резко отличается от излучения твердых тел. Одноатомные и двухатомные газы обладают ничтожно малой излучательной и поглощательной способностью. Эти газы считаются прозрачными для тепловых лучей. Газы трехатомные (СО2 и НаО и др.) и многоатомные уже обладают значительной излучательной, а следовательно, и поглощательной способностью. При высокой температуре излучение трехатомных газов, образующихся при сгорании топлив, имеет большое значение для работы теплообменных устройств. Спектры излучения трехатомных газов, в отличие от излучения серых тел, имеют резко выраженный селективный (избирательный) характер. Этн газы поглощают и излучают лучистую энергию только в определенных интервалах длин волн, расположенных в различных частях спектра (рис. 29-6). Для лучей с другими длинами волн эти газы прозрачны. Когда луч встречает  [c.472]

Если принять теплоемкость величиной постоянной, то на основании данных табл. 3 получаем для одноатомных газов к = 1,67 для двухатомных газов к = 1,4 для трех- и многоатомных газов к — 1,29.  [c.38]

Вычислить среднюю энергию жесткой многоатомной молекулы газа, находящегося при температуре Т.  [c.95]

В отличие от жесткой двухатомной молекулы, которая может вращаться вокруг двух осей (см. 3.5), жесткая многоатомная молекула имеет возможность вращаться вокруг трех осей. Поэтому у нее будут три независимых квадратичных вклада в полную энергию, связанные с ее вращением. Учитывая еще три вклада от движения центра масс, получим  [c.95]

Найти термический КПД цикла Отто, считая, что рабочим телом является многоатомный идеальный газ, энергия молекул которого и = ЗТ. Степень сжатия горючей смеси в цилиндре 112/ 1 8-  [c.118]

Сказанное выше делает возможным с достаточной степенью точности совершить переход к одномерной цепочке атомов. В статистической физике на основе закономерностей колебаний молекул идеального газа и на основе так называемой одномерной кристаллической решетки выводятся уравнения движения для двух- и многоатомных молекул.  [c.48]

Так как спектр поглощения довольно чувствителен к изменениям агрегатного состояния вещества (спектр одноатомного газа состоит из резких линий поглощения, спектр многоатомной молекулы — из отдельных полос с увеличением давления газа спектры поглощения становятся все более и более расплывчатыми, приближаясь при высоких давлениях к спектрам поглощения жидкостей),  [c.282]

В многоатомных молекулах стоксово и антистоксово излучения вызываются переходами между электронно-колебательными уровнями. На рис. 16.5 переходы, обозначенные стрелками 1 и 2, вызывают стоксово, а стрелками 3 и 4 — антистоксово излучения. Следует отметить, что непосредственные переходы с высоких колебательных уровней на практике не осуществляются, поскольку за весьма короткое вре-  [c.365]

Полосатые спектры можно возбуждать также, заставляя газ светиться под действием соответствующего освещения (флуоресценция). Наиболее хорошо исследованы спектры двухатомных молекул. Многоатомные молекулы представляют собой обычно гораздо менее прочные соединения,так как многообразие взаимных вращений и колебаний отдельных частей такой молекулы открывает большое число возможностей распада. Поэтому возбуждение интенсивного спектра многоатомных молекул затруднительно. Вместе с тем спектры многоатомных молекул значительно сложнее, и для различения важных деталей требуется применение спектральных приборов особенно большой разрешающей силы. Совокупность обоих обстоятельств — малая интенсивность и необходимость применения приборов большого разрешения — очень затрудняет исследование спектров испускания многоатомных молекул. Приходится ограни-  [c.744]

Энергетические спектры делятся на две основные группы — сплошные и дискретные. Сложные конденсированные системы, некоторые сложные многоатомные молекулы обладают сплошным спектром уровней энергии. Изолированные атомы и сравнительно простые молекулы обладают, как правило, дискретным спектром уровней энергии, что и определяет их специфические квантовые свойства. Следует отметить, что строго дискретные и строго сплошные энергетические спектры являются крайними случаями. В промежутке между ними существуют разнообразные энергетические спектры.  [c.224]


Отличие молекулярных спектров от атомных и их характерные особенности определяются тем, что во всех молекулах, кяк двухатомных, так и многоатомных, движение является более сложным, чем в ато.мах. Наряду с движением электронов существенную роль играют периодические изменения относительного расположения ядер — колебательное движение молекулы, а также периодические изменения ориентации молекулы как целого в пространстве— вращательное движение молекулы.  [c.233]

Основные закономерности вращательного движения двухатомных молекул проявляются и во вращательных спектрах многоатомных молекул, однако общая картина спектра при этом более сложная.  [c.236]

Колебание двухатомной молекулы можно рассматривать как колебание единичного гармонического или ангармонического осциллятора. Трехатомная молекула обладает уже не одним, а несколькими различными колебательными движениями. Колебательный спектр многоатомной молекулы всегда содержит набор линий (полос), частоты, интенсивности и поляризация которых непосредственно отражают строение и свойства молекулы.  [c.240]

В молекулярной спектроскопии нормальные колебания многоатомных молекул классифицируются по форме и симметрии. Вели при данном нормальном колебании происходит главным образом изменение длин связей, а углы между связями меняются мало, то такое колебание называют валентным (обозначение V). Наоборот, если при колебании изменяются в основном углы между связями, а длины связей практически не меняются, то такое колебание называется деформационным (обозначение 6).  [c.241]

Поскольку для идеального газа цс = = dUf /dT = /iipuR, то мольные теплоемкости одно-, двух- и многоатомных газов равны соответственно  [c.16]

Эпоксидные смолы являются продуктами поликондеисации эпихлоргидрина и многоатомных фенолов. В зависимости от молекулярного веса опп бывают жидкими или твердыми.  [c.407]

Эпоксидные смолы, являющиеся продуктом поликонденсации эпи-хлоргидрина (хлорированного глицерина) и многоатомных фенолов (дифенилолпропана и др.), представляют собой густые, вязкие жидкости, растворимые в спирте и ацетоне. Применяют их для высокопрочных конструкционных пластмасс.  [c.341]

Полиэфирные смолы, являющиеся продуктом полимеризации или поликонденсации сложных эфиров двухосновных кислот (малеиновой, себациновой, анилиновой), ангидридов (фталиевого, малеинового) и многоатомных спиртов (этиленгликоли, пропиленгликоли, диэтиленгликоли), используют для высокопрочных конструкционных и электроизоляционных пластмасс. Они имеют термостойкость до 300° С, способны формоваться при низких давлениях.  [c.341]

Полиуретановые смолы, являющиеся продуктом взаимодействия диизоцианатов с гликолями (многоатомными спиртами и др.), применяют для высокопрочных пластмасс.  [c.342]

Однако для сравнительно высоких температур получается значительное несоответствие приведенных значений темплоемкостей двухатомных газов с экспериментальными данными. Еще большее расхождение получается для трех- и многоатомных газов. Это расхождение объясняется тем, что в сложных молекулах необходимо учитывать не только поступательное и вращательное движение, но  [c.75]

Если считать = onst, то из табл. 6-1 получаем для одноатомного газа k = 1, 66 для двухатомного газа А = 1,4 для трех-и многоатомных газов k = 1,33.  [c.78]

Оттеном [242] показано, что для гелия, неона, аргона и других одноатомных газов, для которых отношение С ,/С, равно примерно 1,67, вихревой эффект по эффектам охлаждения максимален по сравнению с двух-, трех- и многоатомными газами.  [c.58]

Излучение изолированных атомов, например атомов разреженного одноатомного газа или пара металла (На, Н ), отличается наибольшей простотой. Электроны, входящие в состав таких атомов, находятся под действием внутриатомных сил и не испытывают возмущающего действия со стороны окружающих удаленных атомов. Спектры подобных газов состоят из ряда дискретных спектральных линий разной интенсивности, соответствующих различным длинам волн. При исследовании газов, состоящих из многоатомных молекул, спектр получается более сложным. Так, например, в спектре водорода (На) наряду с отдельными, довольно удаленными друг от друга линиями наблюдается большое число тесно расположенных линий (так называемый многолинейчатый или полосатый спектр водорода).  [c.711]

Трудности наблюдения полосатых спектров многоатомных молекул и сложность их теоретической трактовки привели к тому, что спектроскопическое исследование их еще не продвинулось достаточно далеко. В дальнейшем изложении мы ограничимся двухатомными молекулами. Схематический вид и фотография типичного молеку лярного спектра испускания представлены на рис. 38.6 и 38.7 Как мы видим, он состоит из ряда линий, сгруппированных в тес ны полосы. Эти полосы, (а, Ь, с) расположены с определенной пра вильностью, образуя системы полос в свою очередь системы А, В,. . полос, разбросанные нередко по всему спектру, составляют группу, или серию, систем полос ). Фотография изображает одну из систем полос в спектре йода. Совокупность таких систем и представляет всю серию, образующую полный спектр йода.  [c.745]

Таким образом, прихотливый на первый взгляд спектр излучения молекулы, возбужденной монохроматическим светом, получает ясное истолкование и может быть использован для составления схемы молекулярных уровней. В настоящее время флуоресценция молекул изучена для многих двухатомных молекул и приведена в соответствие с общей теорией молекулярных спектров. Исследование спектров флуоресценции многоатомных молекул позволяет разобраться в строении последних, но эти спектры отличаются гораздо больщей сложностью и, следовательно, их значительно труднее интерпретировать.  [c.751]


При малых амплитудах колебания многоатомной молекулы, как и двухатомной, гармонические. Поскольку колебания отдельных атомов в молекуле связаны друг с другом, то многоатомную молекулу можно представить как совокупность набора осцилляторов, движения которых связаны между собой. Энергия, попадающая на один из осцилляторов, например на отдельную связь в молекуле, перераспределяется через некоторое время по другим связям, и все атомы и связи вовлекаются в колебание. Из механики известно, что движение связанной системы как целого может быть представлено наложением ее нормальных колебаний, т. е. таких колебаний, в которых все элементы системы движутся с одинаковой частотой и фазой в тех или иных направлениях. Именно нормальные колебания проявляются в спектрах и число их равно числу степеней свободы. В общем случае Л -атомпой нелинейной молекулы число степеней свободы и число нормальных колебаний равны ЗА —6. Это означает, что, например, в спектре трехатомной молекулы воды Н2О должны быть представлены три частоты и три нормальных колебания. Может оказаться, что некоторые из ЗМ—6 колебаний имеют одинаковые частоты и поэтому разным нормальным колебаниям соответствует одна и та же спектральная линия (полоса).  [c.241]

Кроме анализа формы обычно иринимают во внимание и свойства симметрии колебаний многоатомных молекул. Если при данном нормальном колебании, сопровождающемся изменением длин связей и валентных углов, не про-  [c.241]

Теоретическое рассмотрение электронных спектров многоатомных молекул представляет собой значительные трудности вследствие наличия у таких молекул большого числа (в общем случае ЗЛ/—6) колебательных степеней свободы. Поскольку электронная энергия многоатомной молекулы зависит, вообще говоря, от всех нормальных колебаний, то ее полная энергия уже не выражается плоской иотенциальной кривой, а представляет собой сложную потенциальную поверхность в многомерном пространстве ЗМ—6 измерений. По такой причине сколько-нибудь последовательной и строгой теории электронных спектров многоатомных молекул, пригодной для соединений различных классов, пока не существует.  [c.245]


Смотреть страницы где упоминается термин Га8 многоатомный : [c.17]    [c.32]    [c.109]    [c.367]    [c.159]    [c.38]    [c.209]    [c.145]    [c.565]    [c.244]   
Волны в жидкостях (0) -- [ c.109 ]



ПОИСК



Вращательные и колебательные спектры многоатомных молекул

Выражения коэффициентов переноса через интеграКинетическая теория теплопроводности многоатомных газов и их смесей

Вязкость жидкостей эфиров многоатомных спирто

Газы многоатомные

Газы разреженные многоатомные

Дисперсия ультразвука в многоатомных газах

Жесткие нелинейные многоатомные молекулы

Идеальный классический газ многоатомных молекул Вормалд)

Кузнецов Об одном классе сильнонеравновесных явлений в многоатомных газах

Мисика и Тодоса метод расчета теплопроводности многоатомных газо

Многоатомные газы (классическая теория) Закон равнораспределения

Многоатомные корреляции

Молекулы многоатомные

Молекулярные постоянные многоатомных молекул (с числом атомов от трех до двенадцати) в различных электронных состояниях

Мэсона и Мончика уравнение для теплопроводности многоатомных газов

Наблюдаемые пределы непрерывных спектров и диффузности. Связь этих величин с диссоциационными пределами в простых многоатомных молекулах

Непрерывное верхнее состояние.— Непрерывное нижнее состояние Диффузные спектры. Предиссоциация многоатомных молекул

Номер Название таблицы таблицы Типы симметрии электронных состояний нелинейных многоатомных молекул, соответствующих определенным состояниям различных разъединенных групп атомов

Оператор Гамильтона для многоатомной

Оператор Гамильтона для многоатомной молекулы

Плотность эфиров многоатомных спирто

Преобразование соотношений, описывающих теплопроводность смесей многоатомных газов, к форме уравнения Васильевой

Производные многоатомных спиртов и фенола

Распределение вероятности при колебаниях многоатомных молеку

Рассеяние многоатомное

Релаксация многоатомной системы

Роя — Тодоса метод расчета теплопроводности многоатомных газо

Свойства преобразования (см. также Характеры) ахх, аху уровни и Полная симметрия многоатомных молекул

Сильное рассеяние и многоатомные корреляции

Симметричные линейные трехатомные молекулы.— Несимметричные линейные трехатомные молекулы.— Нелинейные симметричные трехатомные молекулы.— Более сложные случаи.— Правило непересечения и коническое пересечение Непрерывные спектры. Диссоциация многоатомных молекул

Системы аналитических вычислений в теории спектров многоатомных молекул

Спектральные закономерности поглощения и флуоресценции многоатомных молекул

Спирты многоатомные

Температура вспышки эфиров многоатомных спирто

Теплопроводность многоатомных газов

Теплопроводность смесей многоатомных газов

Теплопроводность смесей многоатомных неполярных газов

Типы решений уравнений Фока для многоатомных систем

Типы симметрии электронных состояний нелинейных многоатомных молекул, соответствующих определенным состояниям одинаковых разъединенных групп атомов

Фактор Эйкена и роль внутренних степеней свободы в явлениях переноса многоатомных молекул углеводородов

Физические свойства многоатомных газов при атмосферном давлении

Эйкена метод расчета теплопроводности многоатомных газов

Электронные спектры многоатомных соединений в жидкой фазе

Электронные спектры поглощения многоатомных молекул

Энергетические состояния многоатомных молекул

Энергетические состояния молекулы Вращение двухатомных молекул. Вращение многоатомных молекул. Вращательные спектры. Колебания двухатомных молекул. Колебания многоатомных молелекул. Вращательно-колебательные спектЭлектронные спектры молекул



© 2025 Mash-xxl.info Реклама на сайте