Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дисперсия ультразвука в многоатомных газах

Дисперсия ультразвука в многоатомных газах. Мы говорили выше, что кинетическая энергия движения молекул газа пропорциональна температуре чем выше температура газа, тем с большей скоростью движутся молекулы.  [c.200]

Поглощение и дисперсия ультразвука в жидкостях. Релаксационная теория. Распространение звука и особенно ультразвука в жидкостях сопровождается различного рода релаксационными процессами. С одним из типов релаксационного процесса, заключающегося в перераспределении энергии между внешними и внутренними степенями свободы молекул под действием ультразвуковой волны, мы уже встречались при распространении ультразвука в многоатомных газах, где таким процессом объяснялось наличие дисперсии и аномального (молекулярного) поглощения. В жидкостях положение дела обстоит гораздо сложнее, поскольку гораздо сложнее сама структура жидкостей по сравнению с газами и в жидкостях могут иметь место весьма разнообразные релаксационные процессы.  [c.290]


Точные измерения скорости ультразвука в газах привели к открытию чрезвычайно интересного явления. Было обнаружено, что в многоатомных газах, молекулы которых состоят из нескольких атомов, при достаточно высоких ультразвуковых частотах скорость ультразвука претерпевает изменения, т. е, для таких газов имеет место дисперсия ультразвука. Кроме того, одновременно с изменением скорости ультразвука увеличивается его поглощение. Правда, это изменение скорости, вообще говоря, невелико, но всё же оно значительно больше, чем ошибки измерений. Так, например, было найдено, что для углекислого газа (СО2), молекулы которого состоят из трёх атомов, скорость звука до частоты в 10 гц постоянна и равна 258,9 м/сек, что совпадает со значением, вычисленным по формуле Лапласа. С увеличением частоты эта скорость возрастает примерно на 12 м/сек и при частоте в 10 снова становится постоянной и равной 271 м/сек. Поглощение ультразвука на частоте 277 кгц оказывается приблизительно в 20 раз больше, чем это следует из классической теории поглощения, учитывающей потери энергии благодаря вязкости СО2 и его теплопроводности. На частотах более 10 гц величина поглощения снова совпадает со значением, которое даёт классическая теория. Как объяснить это явление  [c.193]

Групповая скорость. Скорость фронта. Скорость сигнала. Дисперсия упругих волн имеет место не только для стержня мы встречались с ней также, когда шла речь о распространении ультразвуковых волн в многоатомных газах и в органических жидкостях. Дисперсию ультразвука следует ожидать также и в металлах, когда длина волны сравнима с размерами кристаллических зерен ).  [c.448]

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


В заключение скажем несколько слов о механизме релаксационных Процессов в жидкостях, поскольку изучение поглощения звука в жидкостях позволяет сделать предположения о его природе. Сравнительно давно было высказано предположение о том, что в жидкостях могут иметь место релаксационные процессы, аналогичные наблюдаемым в многоатомных газах [174, 179]. Для некоторых жидкостей подобное предположение можно легко исключить на основании акустических измерений. Действительно, как показывает расчёт [1 для воды, поскольку дисперсия не обнаружена до частот 10 г i влияние упомянутых выше процессов на поглощение звука должно быть чрезвычайно малым. В то же время можно показать [180], что поглощение ультразвука в воде полностью  [c.194]

Вопросами дисперсии и молекулярного поглощения ультразвука в многоатомных газах занимались многие советские физики — экспериментаторы и теоретики. Особенно важные работы были выполнены акад. Л. И. Мандельштамом и акад. М. А. Леонтовичем.  [c.202]

Для жидкостей, молекулы которых J м eют сложное с ние (в особенности для жидких органических соединений, например для муравьиной кислоты, уксусной кислоты, бензола и пр.), в определённой полосе частот имеет место явление дисперсии и молекулярного поглощения ультразвука. Причина этого явления во многом аналогична причине молекулярного поглощения и дисперсии ультразвука для многоатомных газов. Теория этих явлений была дана Л. И. Мандельштамом и М. А. Леонтовичем. Ряд важных экспериментальных работ по исследованию поглощения ультразвука в различных жидкостях был проделан П. А. Бажулиным.  [c.275]


Смотреть страницы где упоминается термин Дисперсия ультразвука в многоатомных газах : [c.8]    [c.199]    [c.295]    [c.477]   
Смотреть главы в:

Звуковые волны Издание 2  -> Дисперсия ультразвука в многоатомных газах

Звуковые и ультразвуковые волны Издание 3  -> Дисперсия ультразвука в многоатомных газах



ПОИСК



Га8 многоатомный

Дисперсия

Ультразвук



© 2025 Mash-xxl.info Реклама на сайте