Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Релаксация многоатомной системы

Релаксация многоатомной системы 81  [c.81]

Релаксация многоатомной системы  [c.81]

Рассматриваются общие закономерности электронного поглощения и испускания многоатомных соединений в жидкой фазе. Благодаря взаимодействию со средой, а также миграции колебательной энергии внутри системы процессы поглощения и испускания сложных молекул подчиняются определенным статистическим закономерностям. Это позволяет получить ряд, спектральных соотношений универсального характера и предложить достаточно общие методы определения молекулярных спектроскопических и термодинамических параметров. Они могут быть использованы при исследовании процессов перераспределения колебательной энергии и условий нарушения термодинамического равновесия в растворах, изучении конфигурации частиц среды и релаксации электронных состояний, для разделения полос поглощения и испускания, структура и форма которых искажаются за счет перекрывания спектров нескольких электронных переходов, различных типов центров, наличия примеси, что необходимо для последовательного и глубокого анализа влияния среды на спектры.  [c.30]


УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


Группа работ [429,732—738] посвящена исследованию электронной структуры металлических кластеров методом Ха, позволяющим рассчитать диаграммы энергетических уровней раздельно для электронов с противоположными направлениями спинов, что, безусловно, представляет интерес при рассмотрении магнитных свойств кластеров. Кроме того, этот метод в сочетании с концепцией Слэтера о переходном состоянии описывает возбужденные электронные состояния и зарядовые распределения многоатомной системы, включая эффекты релаксации орбиталей, которые пренебрегаются при использовании теоремы Купменса.  [c.243]

В данной работе для исследования неравновесных эффектов и определения переносных свойств в многоатомных газах типа СОа использовался аппарат кинетической теории многотемпературной релаксации на основе обобщенного уравнения Больцмана с учетом поступательных, вращательных и колебательных степеней свободы, развитый ранее для двухатомных газов Ц]. Преимуществом такого подхода является то, что релаксационные уравнения для заселенностей колебательных уровней во всех приближениях получаются вместе с гидродинамической системой, структура которой зависит только от принятых предположений о расположении по порядку величины соответствующих времен или длин релаксации. Предполагалось, что поступательные и вращательные степени свободы релаксируют быстро, а колебательные — медленно, но с различными скоростями для разных мод колебаний, причем передача колебательной энергии в процессе соударений происходила по законам гармонического осциллятора.  [c.105]

Микроскопнческая теория Р. базируется на молекулярно-кинетической теории, рассматривающей процессы в макроскопич. системах как проявление движения и вз-ствия атомных и субатомных ч-ц. Теория Р. наиб, разработана применительно к газам, в к-рых равновесие устанавливается благодаря столкновению ч-ц газа. При столкновениях ч-цы обмениваются энергиями и импульсами. Частоты столкновений и эффективность обмена выражаются через вероятности столкновений. Вероятности обмена энергиями и импульсами при столкновениях для ч-ц разл. сортов могут существенно отличаться, что сказывается на релаксац. процессах в системе. В электронно-ионной плазме, напр., различие масс эл-нов и ионов приводит к тому, что эти ч-цы легко обмениваются импульсами, но обмен энергией между подсистемами эл-нов и ионов затруднён. В самих же подсистемах (при электрон-электронных и ион-ионных столкновениях) обмен импульсами и энергиями идёт в одном темпе. В результате быстро устанавливается равновесие в ионной и электронной подсистемах плазмы в отдельности, но равновесие в плазме в целом устанавливается медленнее. Аналогичная ситуация наблюдается в газах из многоатомных молекул, где подсистемами явл. поступат. и внутр. степени свободы. Обмен энергией между этими видами степеней свободы затруднён. Быстрее всего устанавливается равновесие по поступат. степеням свободы, потом — по внутренним и медленнее всего — между поступат. и внутренними. В этих условиях частично равновесное состояние может быть описано введением разл. темп-р подсистем. Самый медленный процесс— выравнивание темп-р подсистем — последний этап Р. Хар-ками столкновений в газе явл. ср. время свободного пробега ч-ц Тдр и его длина =1ГСпр (у — ср. скорость ч-ц). По порядку величины Тдр совпадает с временем установления локального равновесия в объеме газа (быстрая Р.). Локально-равновесное состояние описывается макроскопич. параметрами (Г, р и др.), к-рые различны для разных локально-равновесных частей системы, но выравниваются, когда система приходит в полное равновесие. Газ можно считать макроскопич. системой, если I < Ь, где Ь — характерное расстояние (напр., размер сосуда). Переход от локального к полному равновесию (выравниванию темп-р, плотности) требует макроскопически большого числа столкновений (медленная Р.) и из-за  [c.633]


Смотреть страницы где упоминается термин Релаксация многоатомной системы : [c.276]   
Смотреть главы в:

Принципы лазеров  -> Релаксация многоатомной системы



ПОИСК



Га8 многоатомный

Релаксация



© 2025 Mash-xxl.info Реклама на сайте