Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отражательная способность металлов

Металлическая связь присуща типичным металлам и многим интерметаллическим соединениям. Энергия этой связи также высока (сотни килоджоулей на моль). Характерными решетками для металлов являются кубические гранецентрированная (ГЦК) и объемно-центрированная (ОЦК) и гексагональная плотной упаковки. Металлы обладают высокой электро- и теплопроводностью, вызванной наличием свободных электронов, и высокой пластичностью, обусловленной характером связи, позволяющей смещаться без разрушения одной части решетки относительно другой на значительные расстояния. Наличием свободных электронов объясняется также непрозрачность и высокая отражательная способность металлов.  [c.20]


При использовании различных типов лазеров для обработки излучением следует учитывать, что коэффициент отражения материала, а следовательно, и доля поглощенной световой энергии зависят от длины волны лазерного излучения чем короче длина волны излучения ОКГ, тем ниже отражательная способность металла и выше доля поглощенной световой энергии. Из табл. 1 следует, что большинство металлов плохо поглощают излучение СОз-лазеров, имеющее длину волны 10,6 мкм.  [c.7]

Зависимость отражательной способности металлов от длины волны  [c.8]

Информацию о характере и кинетике процесса воздействия излучения СОа-лазера на металлические слои можно получить на стадии нагревания металла (рис. 74) и в момент начала разрушения (табл. 15), а также из данных по измерению отражательной способности металла при нагревании в окислительной атмосфере (рис. 69).  [c.119]

Формула (1-19) описывает изменение отражательной способности металлов в зависимости от оптических констант п и %. При этом следует иметь в виду, что показатель поглощения % характеризует здесь не истинное поглощение, связанное с переходом электромагнитной энергии в теплоту, а затухание, связанное в основном со скин-эффектом. Из падающего на поверхность металла излучения поглощается и переходит в джоулево тепло весьма незначительная часть энергии поля. Основная доля падающей энергии отражается обратно в окружающую среду. Это отражение связано с интенсивным излучением электронами металла вторичных волн под действием поля падающей волны.  [c.23]

В области сильного поглощения при х>2 отражательная способность металлов и рассеивающая способность частиц превосходит их поглощательные способности  [c.47]

Отражательная способность металлов  [c.471]

Схема установки для удаления покрытий лазерным методом приведена на рис. 5. Удаление изоляции с тонких проводов проводят следующим образом [20, с. 168]. Провод протягивается в фокальной плоскости линзы. В результате воздействия излучения лазера изоляция на проводнике выгорает, при этом металлическая жила не успевает разрушиться из-за высокой отражательной способности металла проводника. Скорость перемещения провода выбирают в зависимости от его диаметра, мощности оптического квантового генератора, толщины изоляции. На рис. 6 представлена зависимость скорости удаления электроизоляционного лака с провода от его диаметра.  [c.16]

Покрытия на металлических подложках отверждаются, как правило, быстрее и при меньших дозах излучения, чем, например, на древесине, картоне или пластмассе. Это объясняют большей отражательной способностью металлов по сравнению с другими материалами.  [c.274]


Для отражательной способности металла получаем  [c.447]

Как видно из табл. 7, почти для всех металлов 2л мало по сравнению с л + X + 1- Благодаря этому отражательная способность металлов очень велика — для многих металлов она близка к единице. Металлический блеск , присущий металлам, объясняется их большой отражательной способностью. Так как хил изменяются в зависимости от длины волны, некоторые металлы — в особенности медь  [c.449]

Наиболее универсальными из рассмотренных выше электролитов следует считать фосфорнокислые. В них можно получать хорошее качество полирования не только алюминия, но и его сплавов с магнием, марганцем, медью. Рекомендуется алюминиевые сплавы перед электрополированием подвергать гомогенизирующему отжигу, что способствует повышению отражательной способности металла. Плохо поддаются электрополированию литейные сплавы алюминия с кремнием.  [c.106]

Для металлов (гелиоприемники, как правило, изготовлены из металла) с увеличением длины волны спектральная лучеиспускательная способность падает, а отражательная способность увеличивается. В длинноволновой области спектра металл обладает значительным отражением. Если на металле создать тонкую пленку, сильно поглощающую длинноволновые лучи, то можно получить идеальную для теплового гелиоприемника поверхность, так как видимые и близкие инфракрасные лучи, на которые приходится большая часть солнечной энергии, поглощаются пленкой (покрытие имеет высокое значение е, а/гл ). Учитывая то, что температуры гелиоприемников при использовании концентраторов солнечной энергии достигают 1000 К, для этих целен необходимо применять высокотемпературный класс покрытий.  [c.217]

Какая доля света не пропускается металлом вследствие отражения и какая задерживается в нем благодаря поглощению, зависит от его проводимости. В идеальном проводнике, где потери на джоулево тепло вообще отсутствуют, поглощение равно нулю, так что падающий свет полностью отражается. Очень чистые серебряные пленки, применяемые в интерферометрах Фабри—Перо, приближаются к этому идеалу. Удавалось изготовить пленки, у которых отражение достигало 98—99%, а поглощение составляло около 0,5%. Особенно высока отражательная способность (до 99,8%) такого хорошо проводящего металла, как натрий, и поглощение в нем соответственно незначительно. В металлах, хуже проводящих, например в железе, отражение может составлять всего лишь 30— 40%, так что непрозрачная пленка железа толщиной не более доли микрона поглощает около 60% падающего на нее света.  [c.489]

При сравнительно небольших частотах (инфракрасные лучи) оптические свойства металла обусловливаются главным образом поведением свободных электронов. Но при переходе к видимому и ультрафиолетовому свету начинают играть заметную роль связанные электроны, характеризующиеся собственной частотой, лежащей в области более коротких длин волн. Участие этих электронов обусловливает, так сказать, неметаллические оптические свойства металла. Так, например, серебро, которое в видимой области характеризуется очень большим коэффициентом отражения (свыше 95%) и заметным поглощением, т. е. типичными оптическими особенностями металла, в области ультрафиолета обладает резко выраженной областью плохого отражения и большой прозрачности вблизи X = 316 нм отражательная способность серебра падает до 4,2%, т. е. соответствует отражению от стекла. Ниже приведены коэффициенты отражения серебра (в процентах) для разных длин волн при нормальном падении  [c.490]

Свободная подвижность электронного газа под влиянием электрических или термических напряжений определяет высокую электропроводность и теплопроводность металлов, оптическую непрозрачность и отражательную способность.  [c.15]

Отражательная способность благородных металлов приведена на фиг. 2. Серебро, обладающее очень высокой отражательной способностью в видимой части спектра, используется для бытовых и технических зеркал и в измерительных приборах. Однако в присутствии сероводорода серебро быстро тускнеет. Золото весьма устойчиво к атмосферным воздействиям и не тускнеет в разнообразных атмосферных условиях, поэтому применяется для покрытий детален  [c.400]


Серебро — белый металл с высокой отражательной способностью, причем из большинства электролитов покрытия получаются матовыми и для придания блеска их надо полировать. Покрытия, получаемые из электролитов с блескообразующими добавками, имеют высокую степень отражения (97—98 %), правда, благодаря возникновению на поверхности тонких сульфидных слоев отражательная способность быстро падает.  [c.23]

Для определения результирующих потоков излучения необходимо располагать данными по коэффициентам излучения. Коэффициент излучения является сложной функцией, зависящей от природы излучающего тела, его температуры, состояния поверхности, а для металлов — от степени окисления этой поверхности. Для чистых металлов с полированными поверхностями коэффициент излучения имеет низкие значения. Так, при температуре 100 °С коэффициент излучения по отношению к его величине для абсолютно черного тела не превышает 0,1. Металлы характеризуются высокой отражательной способностью, так как из-за большой электропроводности луч проникает лишь на небольшую глубину. Для чистых металлов коэффициент излучения может быть найден теоретическим путем. Относительный коэффициент (степень черноты) полного нормального излучения для них связан с удельным электрическим сопротивлением рэ зависимостью  [c.385]

Таким образом, характерная особенность металла, состоящая в его высокой отражательной способности и проявляющаяся в наличии особого металлического блеска чистой (не покрытой окислами) поверхности металлов, связана с электропроводностью металла. Чем больще коэффициент электропроводности, тем, вообще говоря, выше отражательная способность металлов.  [c.489]

Излучательная (и отражательная) способность металлов и сплавов сильно зависит от состояния поверхности шепоховатости, наличия оксидных пленок и т. д.). В табл. 8.35—8.37 приведены данные, относящиеся к чистой полированной поверхности. В табл. 8.38 даны значения интегрального коэффициента теплового излучения некоторых оксидов.  [c.191]

С. Металлы в твердом состоянии и отчасти в жидком состоянии обладают высокой тепло- и электропроводностыоу а также прложи-тельным температурным коэффициентом электросопротивления (с повышением температуры электросопротивление чистых металлов возрастает Большое количество металлов ( 20) обладает сверхпроводимостью (у этих металлов при телшературе, близкой к абсолютному нулю, электросопротивление падает скачкообразно до очень малой величины) "термоэлектронной эмиссией (способностью испускать электроны при нагреве) хорошей отражательной способностью (металлы непрозрачны и обладают специфическим металлическим Длеском) повышенной способностью к пластической деформации./Эти свойства характеризуют так называемое металлическое состояние вещества.  [c.7]

В заключение остановимся на отражательной способности металлов для длинных волн (радиоволны, инфракрасные лучи). В этой области проввдимость о практически не зависит от частоты о> и равна своему статическому значению Как показывает формула  [c.451]

К количественным показателям коррозии помимо перечисленных ранее показателя склонности к коррозии / t, очагового показателя коррозии Кп, глубинного показателя коррозии Кп, показателя изменения массы Кт, объемного показателя коррозии Кобъемн, токового показателя коррозии i (плотность коррозионного тока), механического показателя коррозии Ка, показателя изменения электрического сопротивления относится также отражательный (или оптический) показатель коррозиы — выраженное в процентах изменение отражательной способности поверхности металла за определенное время коррозионного процесса.  [c.428]

Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве едст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванические ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестяпщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51.  [c.234]

Металлы благодаря своей способности интенсивно отражать свет играют большую роль в оптике. Например, с целью получения сильного (более 99%) отражения света на поверхности пластин так называемого интерферометра Фабри—Перо наносятся тонкие слои серебра. Поскольку отражательная (и поглощательная) способность металлов связана с его электропроводностью, то при выборе металлов для выщеуказанной цели надо обратить внимание на его электропроводность. Например, железо, которое является  [c.61]


Наличие в металлах металлической связи придает им ряд характерных свойств высокую тепло- и электропроводность, термоэлектрическую эмиссию, т.е. способность испускать электроны при нагреве, хорошую отражательную способность, т.е. обладают мета11лическим блеском и непрозрачны положительный температурный коэффициент электросопротивления, i.e. с повышением температуры электросопротивление увеличивается.  [c.273]

По назначению покрытия подразделяются на защитные, декоративные и специальные. Защитные покрытия защищают основной металл от агрессивного действия окружающей среды в реальных условиях эксплуатации. Декоративные покрытия применяют для придания изделиям необходимого внешнего вида, цвета. Специальные покрытия обеспечивают необходимые физико-механические свойства (износостойкость, проводимость, отражательную способность, термо-стойность, электропроводность, повышенную способность к пайке и др.). При этом достигается экономия дефицитных и дорогостоящих металлов, а полученный материал сочетает свойства основы и покрытия.  [c.50]

Для чистых металлов излучательная способность зависит главным образом от состояния поверхности. Если металлы имеют чистую поверхность, они имеют малую излучательную способность и значительную селективность излучен1я. Селективность излучения их уменьшается с увеличением шероховатости и степени окислеиия поверхности. Если поверхность тела покрывается слоем вещества, сильио поглощающего лучистую энергию, то излучательная способность такого тела увеличивает я. Можно, наоборот, уменьшить излучательную способность тела, если еп) поверхность покрыть пленкой вещества, обладающего большой отражательной способностью. При этом необходимо иметь в виду, что при малой толщине пленки излучающие свойства тела зависят не только от свойств пленки, но также II от свойств вещества, на которое эта пленка наносится. Толщина оксидных пленок на металлах зависит от температуры и увеличивается со временем. Следовательно, в зависимости от. этих факторов изменяется и излучательная способность металлов. Излучение всех тел зависит от температуры. С увеличением температуры излучение увеличивается, так как увеличивается внутренняя энергия тела.  [c.348]

Фиг. 2. Отражательная способность благородныи металлов а. — epet ро о - зплото, в — платиновые металлы / — видимая часть спектра. Фиг. 2. <a href="/info/109363">Отражательная способность</a> благородныи металлов а. — epet ро о - зплото, в — <a href="/info/87074">платиновые металлы</a> / — видимая часть спектра.
Как известно, драгоценные металлы обладают рядом важных специфических свойств (высокой химической стойкостью, электропроводностью, отражательной способностью, нзеюсостойкостью и др.), что приводит к широкому применению этих металлов в радиотехнической, приборостроительной, электронной и других отраслях промышленности. Кроме того, благородные металлы обладают прекрасными защитно-декоративными свойствами, что способствует большому спросу на них в ювелирной, часовой и медицинской промышленности. Электролитическое осаждение этих металлов позволяет резко сократить их потребление по сравнению с использованием деталей, целиком изготовленных из драгоценных металлов. Значение электролитического осаждения их возрастает в связи с уменьшающимися мировыми запасами драгоценных металлов.  [c.3]

Родий получил распространение благодаря своей высокой отражательной способности, а также твердости, износостойкости и большой химической стойкости в агрессивных средах. Причем отражательная способность родия, в отличие от серебра, не изменяется при действии на металл сернистых соединений. Коррозионные испытания на перепад температур, высокую влажность и 3 %-ный раствор Na l также показали хорошую стойкость родиевых покрытий. Родий обладает не только высокой микротвердостью, но и сильными внутренними напряжениями (вследствие склонности поглощать водород).  [c.62]

Родий обладает самой высокой отражательной способностью из всех платиновьис металлов. Коэффициент отражения родия в видимой части спектра несколько ниже, чем у серебра, но в ультрафиолетовой части практически не изменяется в атмосфере сернистых соединений и повышенной влажности. Коррозионные испытания родиевых покрытий при периодическом изменении температуры и влажности среды, а также в 3 %-ном растворе поваренной соли показали их высокую стойкость. Микротвердость электролитического родия в 8—10 раз выше, чем полученного металлургическим путем,— это связано с получением мелкозернистого покрытия, а также с включением водорода в осадок, что определяет высокие внутренние напряжения, которые приводят к возникновению сетки трещин. Удельное электрическое сопротивление родия значительно ниже, чем  [c.75]

В настоящее время структуру выявляют исключительно путем химического или электролитического травления, при этом реактив взаимодействует с полированной поверхностью шлифа. При травлении поверхность шлифа растворяется или окрашивается тонким слоем продуктов травления. Под действием реактивов в металлах и сплавах прежде всего растворяются выделения на границах зерен, имеющие иную химическую природу. Каждая фаза растворяется по-разному одна структурная составляющая растворяется в реактиве быстрее, другая — медленнее. Структура становится видимой, при этом отражательная способность шлифа испытывает изменения, которые внутри кавдой фазы одинаковы независимо от условно ориентированного воздействия реактива. Возникает рельеф, который состоит из выступающих фаз. Благодаря этому становятся видимы контуры структурных составляющих. При применении косого освещения контуры четко различимы благодаря свету и тени.  [c.15]

Применяются медные, стальные и алюминиевые панели. В любом случае поверхность панелей следует подвергать специальной обработке или снабжать покрытием для уменьшения отражательной способности. Поверхность коллектора должна поглощать по меньшей мере 90 % падающих на нее солнечных лучей. Напомним, что эффективность улавливания солнечных лучей зависит от угла их падения на поверхность панели. Поверхность панелей должна быть покрыта черной матовой краской или аиодг.рована, если панель изготовлена из алюминия. На окрашиваемую поверхность иужио предварительно нанести травящее грунтовочное покрытие, чтобы впоследствии краска не шелуишлась. Если в качестве теплоиосктсля используется водопроводная вода и она контактирует с поглощающей теплоту пластиной, нельзя применять для изготовления теплоты ни алюминий, ни углеродистую сталь, так как эти металлы корродируют под действием минеральных солен, содержащихся в воде. Можно использовать обессоленную воду, однако это значительно увеличивает стоимость гелиоустановки.  [c.152]


Смотреть страницы где упоминается термин Отражательная способность металлов : [c.8]    [c.118]    [c.7]    [c.456]    [c.8]    [c.9]    [c.161]    [c.250]    [c.50]    [c.97]    [c.156]    [c.68]    [c.53]   
Основы оптики Изд.2 (1973) -- [ c.57 , c.581 ]



ПОИСК



Определение коррозии по изменению отражательной способности поверхности металла

Отражательная УВТ

Отражательная способность



© 2025 Mash-xxl.info Реклама на сайте