Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перенапряжения электрические

Перелеты авиационные 336, 338, 355— 357, 391, 395, 398 Перенапряжения грозовые 102 Перенапряжения электрические 22 Пирсы 314  [c.463]

Из уравнения (535) следует, что г] уменьшается с уменьшением pH среды и что оно зависит от tpi, т. е. строения двойного электрического слоя. Последнее обстоятельство объясняет влияние адсорбции различных веществ на величину перенапряжения водорода на катоде.  [c.254]

Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами.  [c.42]


Разрядник газовый (ионный) — ионный электровакуумный прибор, действие которого основано на использовании резкого увеличения его проводимости вследствие возникновения самостоятельного дугового или тлеющего разряда- и предназначенный в основном для защиты элементов электрических цепей от перенапряжений или избыточной мощности или коммутации электрических цепей в тех случаях, когда необходимо производить замыкание или размыкание электрической цепи за столь короткое время, которое не могут обеспечить механические выключатели [3].  [c.152]

Грозовые разряды, вызывающие атмосферные перенапряжения, являются сложными электрическими процессами, развивающимися в облаках, насыщенных водяными парами. Наиболее уязвимы к воздействию разрядов молнии протяженные высоковольтные воздушные линии напряжением 6 и 10 кв, работающие в режиме с изолированной нейтралью, питающие станции катодной защиты через понижающие трансформаторы типов ОМ, ОМС и др.  [c.190]

В работах Ю. М. Полукарова с сотр. [82] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавки к электролиту меднения поверхностно активных веществ резко повышают вероятность образования дефектов упаковки, увеличивают искажения кристаллической решетки и плотность дислокаций. Заряд двойного электрического слоя ускоряет процессы возврата в тонких осадках меди (эффект Ребиндера), приводящие к появлению внутренних напряжений растяжения. Влияние электрохимических условий осаждения на состояние кристаллической решетки осадков становится определяющим при достаточно большой толщине осажденного слоя на пластически деформированной монокристал-лической подложке дефектность слоев осадка постепенно уменьшалась при утолщении слоя, а при росте осадка на подложке из граней совершенного монокристалла, наоборот, увеличивалась до значений, соответствующих условиям электролиза.  [c.93]

Поскольку в случае металла коррозионный ток связан с перенапряжением и соответствующим электрическим током, данный эффект, проявляющийся при отсутствии градиента давления (Дт = 0), можно интерпретировать как своего рода электроосмос дислокаций , вызванный градиентом электрического потенциала. Смысл этого процесса достаточно ясен растворение поверхности (коррозионный ток) способствует разрядке дислокаций в местах их скопления у поверхностного барьера и облегчает их движение из глубины к поверхности металла.  [c.134]


В практических условиях электрод сравнения не может быть подведен к границе двойного электрического слоя, он располагается на значительном расстоянии от нее. Поэтому в измеряемую величину включается омическая составляющая разности потенциалов, которая возникает за пределом двойного электрического слоя и электродом сравнения. Это падение напряжения не является перенапряжением, оно не определяет ни характер, ни скорость электродных реакций на металле. Поэтому при измерениях, связанных с контролем минимальных или максимальных поляризационных потенциалов, падение потенциала за пределами двойного электрического слоя нужно исключать. Присутствие омической составляющей приводит во многих случаях к ошибочным заключениям относительно защищенности трубопровода.  [c.19]

Влияние температуры. Если коррозионный процесс идет с водородной деполяризацией, то при увеличении температуры одновременно повышается и скорость коррозии. Основной причиной этого является понижение перенапряжения катодного процесса, ускорение диффузии и уменьшение электрического сопротивления среды.  [c.25]

В течение двух первых десятилетий XX в. не прекращались поиски иных средств защиты от перенапряжений, в том числе обследовалась эффективность грозозащитных тросов — теория тросовой защиты была выдвинута немецким ученым В. Петерсеном в 1914 г. Проверялись защитные свойства высоковольтных конденсаторов и катушек индуктивности. В целом защита от перенапряжений оставалась нерешенной проблемой. Предохранение от прямых ударов молнии считалось совершенно невозможным. Это объяснялось малой изученностью молнии и процессов распространения волн перенапряжений по проводам, а также быстрым моральным старением защитных средств, развитие которых не поспевало за стремительным ростом напряжений и мощностей электрических установок. Положение усугублялось тем, что в мощных сетях проявлялись коммутационные перенапряжения. Техника защиты пошла по ложному пути совмещения в одном аппарате функций защиты от атмосферных и от внутренних перенапряжений 25, с. 35—49].  [c.80]

Q Высоковольтные испытания электрическая прочность диэлектрика, сопротивление изоляции, ток утечки, импульсное напряжение, воздействие высокого потенциала, перенапряжение  [c.110]

Электрический конденсатор С2 включен параллельно генератору и аккумуляторной батарее н защищает от импульсных перенапряжений, которые могут возникнуть в бортовой сети автомобиля при включении мощных потребителей или отключении аккумуляторной батареи при работающем двигателе. В этом случае импульс повышенного напряжения будет заряжать конденсатор С2, что предотвратит воздействие повышенного напряжения на транзистор.  [c.27]

Проверка двигателя. Одним из наиболее сложных для начинающего ремонтника вопросов является принятие решения о том, что по результатам проверки двигатель следует считать сгоревшим. Напомним основные дефекты электрического характера, наиболее часто встречающиеся в двигателях (неважно, однофазных или трехфазных). Большинство этих дефектов имеют причиной сильный перегрев двигателя, обусловленный чрезмерной величиной потребляемого тока. Повышение силы тока может быть следствием электрически> (продолжительное падение напряжения, перенапряжение, плохая настройка предохранительных устройств плохой электрический контакт, неисправный контактор) или механических (заклинивание из-за нехватки масла неполадок, а также аномалий в холодильном контуре (слишком большое давление конденсации, присутствие кислот в контуре...).  [c.277]

Находясь в электрическом контакте с большинством других конструкционных материалов титан и его сплавы в спокойной морской воде являются катодами. Такой контакт может ускорить коррозию сопряженного металла на большую или меньшую величину в соответствии с соотношениями площадей и поляризационными характеристиками контактирующих материалов (рис. 4.17). Из-за более низкого перенапряжения катодной реакции на медном электроде по сравнению с титановым электродом, потери массы углеродистой стали, находящейся в контакте с медью в несколько раз больше, чем в случае контакте с титаном (рис. 4.18).  [c.199]


Наконец, установленные выше закономерности позволяют объяснить и влияние на перенапряжение водорода поверхностно-активных ионов и молекул. Учитывая строение двойного слоя (см. рис. 13), можно заключить, что адсорбция катионов в плотной части двойного слоя (поверхностно-активные ионы адсорбируются здесь) при наличии отрицательного заряда поверхности электрода должна привести к уменьшению х-потенциала, т. е. сдвигу его в положительную сторону, который в соответствии с уравнением (30,1) приведет к уменьшению концентрации ионов водорода в поверхностном слое и увеличению перенапряжения. Адсорбция поверхностно-активных анионов, наоборот, приводит к уменьшению плотности положительных зарядов в плотной части двойного слоя и сдвигу фг-потенциала в отрицательную сторону, в результате чего концентрация ионов водорода в поверхностном слое возрастает, и перенапряжение водорода уменьшается. При адсорбции нейтральных молекул (спиртов или кислот жирного ряда) обычно наблюдается повышение перенапряжения водорода, что объясняется затруднением подхода иона водорода к поверхности электрода и ослаблением действия электрического поля на энергию активации вследствие увеличения толщины двойного слоя.  [c.32]

Основная причина такого высокого перенапряжения заключается в строении самого атома, который отличается прочной электронной структурой, затрудняющей подход и деформацию аниона в электрическом поле.  [c.54]

Исследование процессов восстановления нитрита на капельном ртутном электроде также показало, что восстановление идет с большим перенапряжением 158]. На капельном ртутном электроде нитриты вообще не смогли быть восстановлены из нейтральных растворов без наличия катионов высокой валентности, как известно, хорошо адсорбирующихся на отрицательно заряженном катоде и снижающих вследствие этого электрический потенциал катода. Значения потенциалов восстановления нитритов достигают при этом 1—2 в, в зависимости от валентности катиона.  [c.55]

Основная причина высокого перенапряжения для этой реакции заключается в строении нитрит-иона, отличающегося устойчивой электронной структурой, затрудняющей подход к катоду и деформацию иона в электрическом поле. Известно, что подход к отрицательно заряженному катоду частиц с отрицательным знаком возможен лишь в случае сложных анионов, способных к деформации в электрическом поле. Однако нитрит-ион настолько  [c.34]

Что касается введения в качестве ингибиторов добавок молекулярного типа, то их эффективность зависит от того, как ориентируются диполи в двойном слое. Если молекулы при адсорбции ориентируются положительными концами в сторону металла, возникает положительный адсорбционный скачок потенциала, повышается перенапряжение водорода и уменьшается коррозия. Если же они ориентируются таким образом, что к металлу обращены их отрицательные концы, возникает отрицательный адсорбционный скачок потенциала, который должен наподобие добавки анионного типа снижать перенапряжение водорода. При использовании добавок молекулярного типа эффекты экранирования или снижения напряженности электрического поля, благодаря увеличению толщины двойного слоя, могут иногда быть значительными. В результате эффект, возникающий от определенной ориентации ингибитора в двойном слое, может быть перекрыт. В связи с этим молекулярные добавки, ориентированные своим отрицательным концом в сторону металла, могут оказаться также хорошими ингибиторами.  [c.119]

Перенапряжение процесса ионизации металла,, когда выход электронов происходит быстрее, чем переход ионов металла в раствор. В результате отрицательный заряд металла (в двойном электрическом слое)  [c.35]

Если же процесс выделения водорода протекает по механизму замедленного разряда (металлы второй электрохимической группы), действие ингибиторов оказывается тесно связанным с электрическими свойствами адсорбированных частиц. Поверхностноактивные анионы, вследствие отрицательной величины создаваемого ими адсорбционного скачка потенциала понижают (рис. 47, табл. 15) перенапряжение водорода на этих металлах (например, на Hg, РЬ, d, In, Zn [118—122]). Они могут быть эффективными ингибиторами лишь в том случае, если влияние заряда добавки окажется более слабым, чем влияние других факторов, например механической блокировки поверхности металла. Поверхностноактивные катионы, напротив, тормозят процесс выделения водорода (рис. 48) не только в результате экранирующего действия добавок, но и благодаря создаваемому ими электрическому полю. Поэтому для металлов второй электрохимической группы добавки катионного типа оказываются обычно более  [c.86]

Эрдей-Груз и Фольмер (1930 г.), исходя из предположения замедленности стадии разряда водородных ионов и предполагая, что разряду подвергаются не все ионы, но лишь наиболее активные, концентрация которых является постоянной при t = onst и в сильном поле определяется экспоненциальной функцией, пришли к заключению об ограниченной скорости разряда ионов, требую-ш,ей для своего увеличения либо повышения концентрации активных водородных ионов, либо снижения требуемого уровня энергии активации. Роль электрического поля, по Эрдей-Грузу и Фольмеру, состоит в том, что оно снижает необходимую энергию активации на величину, пропорциональную работе перенапряжения, т. е. на (irjf, где Р < 1 (по опытным данным Р = 0,5). Для достаточно больших перенапряжений ими была получена зависимость  [c.253]

Структуры поверхностного слоя, образованного в результате импульсной обработки, имеют пониженный минимум емкости двойного электрического слоя металл-среда. Белые слои, повышая перенапряжение катодной и анодной сопряженных реакций, заметно увеличивают тафелевскую константу и уменьшают ток коррозии в связи с увеличением степени локализации валентных электронов и усилением ковалентности связи желеэо—углерод, которое наступает в итоге импульсного воздействия высоких температур и давлений при формировании структур в поверхностном слое. При этом рост содержания углерода в белом слое из-за улучшения его качества приводит к понижению емкости двойного электрического слоя и увеличению коррозионной стойкости стали.  [c.116]


Очевидно, однако, что ни одна из рассмотренных возможностей не монщт быть использована применительно к анодам ХИТ, так как во всех этих случаях резко замедляется анодный процесс, что приводит к ухудшению электрических характеристик источников тока. В химических источниках тока наиболее перспективным представляется применение в качестве ингибиторов солей тяжелых металлов — ртути, свинца, кальция, таллия и некоторых других, защитное действие которых связано [192 2561 с тем, что на них перенапряжение водорода заметно выше, чем на защищаемых металлах — железе и цинке (табл. 20).  [c.85]

Большие трудности были преодолены при решении проблемы снижегая потерь энергии на корону и защиты линий передачи 400—500 кв от перенапряжений. С этой целью была использована идея академика В. Ф. Миткевича об увеличении электрического диаметра проводов путем их расщепления, высказанная им еще в 1910 г.  [c.31]

Для металлов этот эффект может быть назван механоэлектри-ческим, поскольку механические процессы вызывают появление разности электрических потенциалов. Поскольку знак этой разности противоположен знаку перенапряжения г] = A/zF коррозионного процесса, перенос дислокаций замедляется. Другими словами, выражение (213) характеризует потенциал переноса  [c.134]

Для металлов этот эффект может быть назван механоэлектри-ческим, поскольку механические процессы вызывают появление разности электрических потенциалов. Поскольку знак этой разности противоположен знаку перенапряжения (т] = A/zF) коррозионного процесса, перенос дислокаций замедляется. Другими словами, выражение (226) характеризует потенциал переноса дислокаций, который тесно связан с разблагораживанием равновесного потенциала и является выражением термодинамического принципа Ле-Шателье—Брауна. Действительно, формирование металлического кристалла (содержащего дефекты) электрооса-  [c.140]

Для увеличения скорости водородной деполяризации вводят также анионы, которые, внедряясь в двойной электрический слой, увеличивают скорость катодного процесса. Не менее эффективны методы снижения перенапряжения водорода, а также повышения температуры электролита. Для металлов, характеризующихся высоким перенапряжением водорода, повышение температуры на 1 град приводит к снижению перенапряжения в среднем на 2—4 мВ. Хотя подвижность ионов водорода велика и их концентрация в кислых растворах достаточна для того, чтобы не наступала концентрационная поляризация, в неразмешиваемых электролитах со временем может наблюдаться торможение процесса вследствие затруднения отвода продуктов растворения металлов. В этом случае для увеличения скорости коррозионного процесса применяют перемешивание электролита.  [c.24]

Сравним скорость выдмения водорода на двух различных катодах, предположив, что величина перенапряжения в обоих случаях одна и та же (рис. 20). На основании уравнения Тафеля, приведенного выше, скорость катодного выделения водорода в электрических единицах можно представить следующим образом  [c.70]

Одновременно с сооружением первых электрических установок возникла проблема борьбы с перенапряжениями. Реальную опасность представляли перенапряжения, индуктируемые в воздушных проводах при близких грозовых разрядах. Исторически первыми средствами заш иты от атмосферного электричества были приспособления, заимствованные-из практики грозозащиты зданий и телеграфных линий связи заземленные тросы, стержневые молниеотводы и снабженные плавкими вставками телеграфные громоотводы, являющиеся прототипом разрядников. В 90-е-годы появилось много видов грозозащитных аппаратов, основанных на различных принципах действия водоструйные заземлители, постепенно-снижавшие перенапряжения электростатического происхождения разрядники с искровым промежутком и принудительным гашением дуги, катушки самоиндукции, предложенные английским физиком О. Лоджем в. качестве фильтров для импульсных токов молнии и др. При конструировании разрядников наиболее сложная задача заключалась в надежном гашении дуги сопровождающего тока, величина которого стремительно росла вместе с повышением мощностей электрических станций. Много изобретательности и неудачных попыток ученых и инженеров различных стран было связано с созданием разрядников. В 1891 г. И. Томсон предложил конструкцию с многократным разрывом дуги — принцип, нашедший полное признание лишь в 20—30-е годы XX в. при одновременном использовании в разрядниках токоограничивающих сопротивлений с вентильными свойствами. Начиная с 1896 г. самым распространенным видом разрядника становится роговой громоотвод, предложенный немецким электротехником Э. Ольшлегером. К 1900 г. он завоевал почти полную монополию в сетях напряжением до 10 кВ. Благодаря многочисленным усовершенствованиям роговых разрядников этот тин грозозащиты надолго удержался в европейских сетях напряжением до 50—60 кВ [31]. Америка пошла по-другому пути. Начиная с 1907 г. там распространились алюминиевые разрядники, отвечающие требованиям работы сетей напряжением 100— 150 кВ. Разрядник не обладал безупречными характеристиками и надежностью действия и явился лишь временной защитной мерой (до начала 20-х годов) [32].  [c.79]

Из уравнения (4,14) следует, что увеличение концентрации электролита в растворе, которое может иметь место, например, при прибавлении нейтральных солей, приводит к уменьшению фч-потенциала. Последнее обусловлено сжатием двойного электрического слоя и уменьшением диффузной части, что, в свою очередь, приводит к уменьшению концентрации водорода в поверхностном слое. Подставляя в уравнение (4,21) для перенапряжения водорода значение фгпотенцнала из (4,14), получаем  [c.114]

Однако это противоречие кажущееся лишь потому, что органические ингибиторы оказывают влияние на водородное перенапряжение не только изменяя потенциал, а и изменяя степень заполнения поверхности. Последнее затрудняет разряд ионов водорода, а также перенос катионов металла в раствор. В зависимости от того, какой эффект преобладает, водородное перенапряжение может повыситься или понизиться. В связи с этим Антропов [59] считает, что для металлов Fe, Сг, Ni, Со, Pt, скорость выделения водорода на которых лимитируется химической реакцией молиза-ции водорода, ингибирующее действие добавок должно определяться в основном экранированием поверхности. Для этих металлов независимо от электрической природы добавки наблюдается увеличение перенапряжения водорода.  [c.118]

Ввиду того, что опорные и натяжные конструкции выполняют одновременно роль защиты от электрической дуги, вызываемой грозовыми перенапряжениями, последние не приюдят к повреждению проводов  [c.353]

Такой эффект катодного выделения более положительных металлов и, вследствие этого, ускорение коррозии наблюдается также, если в растворе находятся соли тяжелых металлов с достаточно положительным электрохимическим потенциалом (Pt, Au, Ag, Си, Ni и, в меньшей степени, Fe). Поэтому в замкнутых полиметаллических системах, по которым циркулируют водные растворы, например, морская вода, наблюдается усиление коррозии алюминия и его сплавов, если в этой системе находятся медь или медные сплавы, даже при отсутствии электрического контакта с алюминием. Таким образом, сравнительно высокую коррозио1ь ную стойкость чистого алюминия и некоторых его сплавов, кроме основного влияния защитных кроющих пассивных пленок (анодный контроль), в значительной мере объясняют высоким перенапряжением выделения водорода на поверхности алюмнння, особенно в пассивном состоянии (катодный контроль). Примеси тяжелых металлов (в первую очередь в практических условиях железа или меди) сильно понижают химическую устойчивость алюминия не только вследствие нарушения сплошности защитных пленок, но и благодаря облегчению катодного процесса. Присадки более электроотрицательных металлов с высоким перенапряжением водорода (Mg, Zn) в меньшей степени понижают коррозионную стойкость алюминия.  [c.261]


На сплавах титан—палладий была изуч ена кинетика накопления палладия на поверхности. Установлено, что не весь накапливающийся на иоверхности палладий катодно-эффективен. Часть палладия накапливается на поверхности в катод-но-неэффектив ной форме. Это может явиться следствием потери некоторыми частицами палладия электрического контакта с основой (например, вследствие подтравливания основного металла, изолящиии окисными слоями или механического отрыва пузырьками водорода) или повышением удельного перенапряжения на частицах палладия, из-за их наводорожива-ния или отравления (мышьяк, сурьма). Было установлено, что соотношение эффективного палладия к неэффективному зависит от условий коррозии. Оно возрастает при увеличении содержания палладия в сплаве.  [c.38]

Пробой диэлектриков иосит либо тепловой, либо электрический — лавинный характер. Механизм теплового пробоя — постепенный разогрев участка диэлектрика, падение его сопротивления и термическое разрушение. Развитие теплового пробоя в зависимости от перенапряжения изменяется от нескольких секунд до сотых долей секунды. Электрический пробой является электроннолавинным процессом и происходит за 10 —10 сек. Проводимость и пробивное напряжение диэлектриков сильно зависят от чистоты и структуры вещества. Если у металлов технической чистоты проводимость составляет 80—99% проводимости идеального монокристалла, то у диэлектриков пробивное напряжение и изоляционные свойства составляют обычно не более 10% установленных на совершенных образцах.  [c.320]

Газостойкость (способность выделять или поглощать газ) позволяет, оценивать устойчивость жидких диэлектриков к воздействию электрического поля в специальных реакторах коронного, искрового или тлеющего разряда. Наиболее распространенные. типы реакторов представлены на рис. 4.1. Газопоглощение пропитывающего вещества в электрическом поле — необходимое условие для стойкости к воздействию частичных разрядов в пропитанных электроизоляционных системах. Известны случаи обнаружения корреляции между газостойко-стью и устойчивостью конденсаторов к воздействию перенапряжений.  [c.68]

Для пропитанных хлордифенилом конденсаторов с повышенным градиентом желательно, а в бумажКо-пленочных и пленочных конденсаторах обязательно применение эпоксидных стабилизаторов пропитывающего вещества, В противном случае возникающие при низких температурах и даже слабых перенапряжениях частичные разряды приводят к выделению НС1 и выходу конденсаторов из строя. При контактировании с полипропиленовой пленкой хлор-дифенилы вымывают примеси, из которых наиболее опасны хлористые соединения (остатки катализатора), существенно ухудшающие электрические характеристики конденсатора. Эпоксидный стабилизатор связывает НС1, предохраняя конденсатор от разрушения.  [c.84]


Смотреть страницы где упоминается термин Перенапряжения электрические : [c.305]    [c.135]    [c.483]    [c.230]    [c.250]    [c.248]    [c.248]    [c.119]    [c.84]    [c.64]    [c.468]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.22 ]



ПОИСК



Перенапряжение

Перенапряжение Разность электрических потенциалов между металлическим электродом и раствором соли того же металла Обобщение уравнения Нернста



© 2025 Mash-xxl.info Реклама на сайте