Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругость тела

Как указывалось в разделе 4.2, условие страгивания тре-Ш.ИНЫ, определяющееся трещиностойкостью материала Кс, существенно зависит от температуры и скорости нагружения. Поскольку КИН однозначно связан с интенсивностью высвобождения упругой энергии G, то трещиностойкость материала может быть выражена через этот параметр механики разрушения. При локализованном пластическом течении у вершины трещины диссипацию энергии пластического деформирования (необходимого для обеспечения условий зарождения хрупкого разрушения) можно добавить к энергии, необходимой для образования новой поверхности трещины, что равносильно переходу к исследованию упругого тела, для которого условие страгивания трещины определяется из уравнения G = Ge [253].  [c.242]


В 1678 г. английский ученый Роберт Гук (1635—1703) установил закон деформирования упругих тел, согласно которому деформация упругого тела пропорциональна действующему на него усилию. Этот закон является основным в теории сопротивления материалов.  [c.8]

Согласно закону сохранения энергии, работа внешних сил не исчезает, а трансформируется в потенциальную энергию, накапливаемую в упругом теле. Следовательно, величина накопленной потенциальной энергии деформации определяется величиной работы внешних сил. Эта энергия проявляется в виде работы, совершаемой при разгрузке внутренними силами. Снимая, например, часть гирь, приложенных к балке (рис. 385), заметим, что балка несколько выпрямится и при- Рис. 385 поднимет оставшиеся гири. Таким образом, упругое тело способно аккумулировать механическую энергию, которую можно вернуть при разгрузке.  [c.386]

Чтобы то или иное тело способно было совершать колебания, ему необходимо иметь определенную массу и упругость. Если упругое тело (нагруженная балка, скрученный вал или деформированная рессора) будет выведено из положения равновесия какой-либо посторонней причиной (ударом, внезапно приложенной силой), то сила упругости этого тела в новом положении уже не уравновесится нагрузкой и возникнут колебания.  [c.526]

КОЛЕБАНИЯ УПРУГИХ ТЕЛ С РАСПРЕДЕЛЕННЫМИ МАССАМИ  [c.564]

Способ Бубнова — Галеркина. Способ, разработанный Н. Г. Бубновым и Б. Г. Галеркиным, получил широкое распространение для приближенного решения различных задач статики н динамики упругих тел. Для большей наглядности рассмотрим применение этого способа на примере решения задачи о поперечных колебаниях стержня переменного сечения, описываемых дифференциальным уравнением  [c.586]

Впервые правильное решение основных случаев сжатия упругих тел дано методами теории упругости в работах немецкого физика Г. Герца, относящихся к 1881—1882 гг. Дальнейшее развитие контактной проблемы принадлежит главным образом советским ученым.  [c.651]

Из теории удара известно, что сила соударения упругих тел  [c.178]

Для шарикоподшипников зависимость между сближением 6 шариков и колец и сжимающей нагрузкой F, как следует из задачи теории упругости о сжатии упругих тел,  [c.347]

Когда упругое тело (система) под влиянием какой-либо нагрузки переходит из недеформированного состояния в деформированное уравновешенное состояние, суммарная работа, произведенная в этом процессе внешними и внутренними силами, равна нулю  [c.66]


Действительное напряженное состояние равновесия упругого тела (системы) отличается от всех смежных состояний равновесия тем, что оно дает минимум потенциальной энергии деформации.  [c.67]

Принцип наименьшей работы справедлив для линейно-де-формируемых (т. е. подчиняющихся закону Гука) упругих тел и систем. Он предоставляет в наше распоряжение любое нужное нам число уравнений (и притом линейных) для определения искомых неизвестных величин.  [c.67]

Рассмотрим теперь совместное действие сил п Р . Приложим к упругому телу силу Рь а затем, не снимая ее, силу Р . Тогда перемещение, которое получит точка А, можно записать следующим выражением  [c.26]

Рассмотрим процесс деформирования упругого тела с энергетическом точки зрения.  [c.38]

Внешние силы, приложенные к упругому телу, совершают работу. Обозначим ее через А. В результате этой работы накапливается потенциальная энергия деформированного тела и. Кроме того, работа идет на сообщение скорости массе тела, т. е. преобразуется в кинетическую энергию К. Баланс энергий имеет вид  [c.38]

Первый критерий в оценке быстро изменяющихся нагрузок используется в основном при анализе вопросов колебаний упругих тел (см. гл. XV), второй — при изучении механических свойств материалов в связи с процессами быстрого деформирования.  [c.73]

Рассмотрим упругое тело, нагруженное произвольной системой сил и закрепленное тем или иным способом, но так, чтобы были исключены его смещения как жесткого целого (рис, 186). Пусть потенциальная энергия деформации, накопленная в объеме тела в результате работы внешних сил, равна U. Одной из сил, например  [c.173]

Рассмотрим упругое тело, к которому приложены сила Р в точке А и сила Р-2 в точке В (рис. 207). Полагая, что 1( системе может быть применен принцип независимости действия сил, определим работу, которую совершат си-Л1>1 Р] и Ра при прямом и обратном порядке приложения.  [c.192]

Явление потери устойчивости для упругих тел можно наблюдать на целом ряде примеров.  [c.412]

Под ударной понимается всякая, вообще говоря, быстро изменяющаяся нагрузка. Задача о расчете конструкций на ударную нагрузку содержит в себе много трудностей, которые далеко не всегда могут быть преодолены простейшими средствами. Сюда относится в первую очередь анализ напряженного состояния в зоне контакта соударяющихся тел и процесса изменения контактных сил во времени. Большие сложности вызывает необходимость учета при резких ударах дополнительных степеней свободы упругого тела, влиянием которых при других видах нагружения можно было бы пренебречь. Существенную роль в процессе удара играет трудно поддающийся анализу фактор рассеяния энергии.  [c.499]

Выдающийся математик и механик Л. Эйлер (1707—1783), швейцарец по происхождению, тридцать лет жил и работал в России, профессор, а затем действительный член Петербургской Академии наук, автор 850 научных трудов, решил ряд задач по кинематике и динамике твердого тела, исследовал колебания и устойчивость упругих тел, занимался и вопросами практической механики, исследовал, в частности, различные профили зубьев зубчатых колес и пришел к выводу о том, что наиболее перспективный профиль — эвольвентный.  [c.5]

Здесь сперва нужно определить площадь контакта поверхностей и распределение давления по площади контакта. В общем случае высшей пары первоначальный контакт осуществляется по линии или в точке, а затем при нагружении пятно касания принимает форму эллипса, переходящего в предельных случаях в круг или прямоугольник. В теории контактных деформаций упругих тел получены формулы для определения размеров пятна контакта и распределения давления [11]. В рассматриваемом случае пятно контакта после нагружения будет в виде прямоугольника, половина ширины которого ,-  [c.251]

Внутренними силами называют силы взаимодействия между материальными точками данной механической системы. Примером внутренних сил могут служить силы упругости, действующие между частицами упругого тела, принятого за механическую систему.  [c.89]


Поэтому можно к исследованию механизмов с различными функциональными назначениями применять общие методы, базирующиеся на основных принципах современной механики. В механике обычно рассматриваются статика, кинематика и динамика как абсолютно твердых, так и упругих тел. При исследовании машин и механизмов, как правило, мы можем считать жесткие тела, образующие механизм, абсолютно твердыми, так как перемещения, возникающие от упругих деформаций тел, малы по от Ю-[[leHHfO к перемещениям самих тел и их точек. Если мы рассматриваем механизмы как устройства, в состав которых входят только твердые тела, то для исследования кинематики и динамики механизмов можно пользоваться методами, излагаемыми в теоретической механике. Если же требуется изучить кинематику и динамику механизмов с учетом упругости звеньев, то Для этого, кроме методов теоретической механ.чки, мы должны еще применять методы, излагаемые в сопротивлении материалов, теории упругости и теории колебании. Если в состав механизма входят жидкие или газообразные тела, то необходимо привлекать к исследованию кинематики и динамики механизмов гидромеханику и аэромеханику.  [c.17]

ДОВОЛЬНО больших разностей первых нормальных напряжений Тц — Т22 и гораздо меньших разностей вторых нормальных напряжений Таз — Т33. Это поведение напоминает эффект Пойн-тинга, полученный в теории изотропныз упругих тел в твердом образце, подвергаемом сдвиговой деформации, возникает отличная т нуля разность первых нормальных напряжений.  [c.74]

Используя нестрогие определения, упругие тела можно считать материалами, обладающими совершенной памятью каждое из этих тел помнит, таким образом, свою предпочтительную форму. В то же время вязкие жидкости (или в общем случае жидкости Рейнара — Ривлина) не обладают памятью и чувствительны лишь к мгновенной скорости деформации. Между двумя этими крайними концепциями возможны промежуточные. Можно представить себе материалы, которые, хотя и лишены отсчетной конфигурации особой физической значимости — они не обладают способностью запоминать свою предпочтительную форму навсегда и, по существу, являются жидкостями ,— все же могут сохранять некоторую память о прошлых деформациях. Очевидно, здесь затронуто понятие о затухающей памяти , которую следует определить. При жэлании можно видеть, что, в то время как твердые тела запоминают одну форму навсегда, в памяти жидкости удерживаются все формы, но не навсегда.  [c.75]

Упругое скольжение связано с упругими деформациями в зоне контакта. Элементарно это можно объяснить на примере цилиндрической передачи (см. рис. U.1). Если бы катки были абсолютно жесткими, то пс рвоначальный контакт по линии оставался бы таким и под нагрузкой. При этом окружные скорости по всей линии контакта равны и 1 кольжения не происходит. При упругих телах первоначальный контакт по линии переходит под нагрузкой в контакт по некоторой пло-П1,адке. Равенство окружных скоростей соблюдается только в точках, расположенных ira одной из линий этой площадки. Во всех других точках образуется скольжение.  [c.216]

В настоящее время для анализа устойчивости квазистати-ческого подрастания трещины обычно используют концепцию Уд-кривых и модуля разрыва [33, 219, 339, 426]. Суть /д-подхода заключается в допущении, что процесс разрушения, происходящий у вершины субкритически развивающейся трещины, контролируется двумя параметрами приращением длины трещины AL и /-интегралом Черепанова—Райса, введенным для нелинейно-упругого тела. Иными словами, предполагается, что зависимость J (AL) однозначно определяет сопротивление субкри-тическому росту трещины независимо от вида приложенной нагрузки (при условии монотонного характера нагружения) и геометрии образца. В то же время во многих работах указывается на уязвимость этого подхода, в частности на неинвариант-ность /н-кривых к типу нагружения и геометрии образцов. Поэтому не случайно появление в последние годы большого количества работ, посвященных модификации /д-подхода путем введения различного вида энергетических интегралов [33, 276, 287, 288]. Наиболее значительные результаты получены при использовании интеграла Т [33, 287, 288]. В то же время методичес-  [c.253]

Силу, зависятцую от координаты х, могут создать сжатая ИJш растянутая пружина и другие упругие тела при их деформации. Силы, зависящие от скорости движения,— это прежде всего силы сопротивления, когда материальная точка движется в какой-либо среде, например в воздухе, в воде и т. д.  [c.247]

При теоретическом решении задачи о напряженном состоянии в зоне контакта упругих тел (Герц, Беляев, Фэппль) предполагают, что нагрузка, статическая, материалы тел изотропны, площадка контакта мала по сравнению с поверхностями и действующие усиления направлены нормально к этой площадке.  [c.341]

Через любую точку упругого тела, подверженного действию внещней нагрузки, можно провести бесчисленное множество сече-ни11 (площадок), по которым в общем случае будут действовать как нормальные, так и касательные напряжения. При этом вели-  [c.125]

Однако определение силы удара (/) по формуле (22.1) весьма затруднительно, так как не известно время соударения, т. е. время, в течение которого скорость движущегося тела снижается от своего максимального значения в момент соприкосновения с ударяемым телом (начало удара) до нуля после деформации последнего (конец удара). В связи с указанными труд-1ЮСТЯМИ, определяя напряжения в элементах упругих систем, вызываемые действием ударных нагрузок (динамические напряжения), в инженерной практике обычно пользуются так называемым энергетическим методом, основанным на законе сохранения энергии. Согласно этому методу полагают, что при соударении движущихся тел уменьшение запаса кинетической энергии их равно увеличению потенциальной энергии. деформации соударяющихся упругих тел.  [c.626]


Значительное внимание в теории упругости уделено проблеме давления и деформации таких упругих тел, как две сферы, находящиеся в контакте или участвующие в процессе столкновения, причем основные определения были даны Герцем и Редеем в работе [813]. Релей установил, что продолжительность контакта очень велика по сравнению с периодом низшей гармоники колебаний рассматриваемых сфер. Согласно Релею, продо.лжите.льность кон-  [c.226]

Системы, для которых соблюдается условие пропорциональности между перемещениями и внешними силами, подчиняются принципу суперпозиции или принципу независимости действия сил. В соответствии с этим принципом перемещения и внутренние силы, возникающие в упругом теле, считаются не зависящими от порядка приложения внешних сил. То есть, если к системе приложено несколько сил, то можно определить внутренние силы, напряжения, перемещения и де-фор.мацин от каждой силы в отдельности, а зате.м результат действия всех сил получить как сумму действий каждой силы.  [c.25]

Примем теперь, что сила P снята и в некоторой новой точке упругого тела приложена сила Р . Переме1цение, которое вызовет эта сила в точке А, будет  [c.25]

При разгрузке тела за счет потенциальной энергии производится работа. Таким образом, упругое тело является аккумулятором энергии. Это свойство упругих тел широко используется, например, в заводных пружинах часовых механизмов и в различных упругих амортизируюнтих элементах (рессоры, пружины, торсионные валы и др.).  [c.38]

Рассмотренная аналогия не является единственной. Для задачи о кручении бруса могут быть предложены и другие аналогии, связанные, например, с гидродинамическими законами течений. В теории упругости при решении нетсоторых задач используются также эле) тро-статические аналогии, где законы распределения напряясеннй в упругом теле устанавливаются путем замера напряженности электростатического поля в различных точках исследуемой области модели.  [c.97]

Пример 5.11. Определить изменение объема упругого тела промзно.ть-ной формы, нагруженного двумя равными, противоположно напрапленмыми силами Р (рис. 209). Расстояние между точками приложения сил равно //. Упругие константы материала заданы.  [c.193]

Многочисленные теоретические и экспериментальные исследования показывают, что в облааи резких изменений в форме упругого тела (входящие углы, отверстия, выточки), а также в зоне контакта деталей возникают повышенные напряжения.  [c.396]

Характерной особенностью подобных систем является то, что внешние силы при неремеще ниях упругого тела совершают работу, величина которой зависит не только от пройденного расстояния, но и от того, по какому пути было пройдено это расстояние. Такою рода системы носят название некон-серв/тшвных.  [c.453]

За 30 лет работы в Российской Академии иаук Эйлер создал боль-пюе количество работ по математике, механике твердого и упругого тела, гидромеханике и небесной механике.  [c.5]

Механическое движение нигде и никогда не может произвести работу, если оно не будет но видимости уничтожено как таковое, если оно не превратится в какую-нибудь другуюформу движения . Так, например, работа сил трения, тормозящих движение тела, работа сил тяжести поднимаемого груза, работа сил упругости пружины, останавливающей движущееся тело, являются мерами уничтожаемого механического движения, которое превращается в теплоту, потенциальную энергию, энергию упругого тела.  [c.158]


Смотреть страницы где упоминается термин Упругость тела : [c.106]    [c.257]    [c.264]    [c.627]    [c.24]    [c.282]    [c.261]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.10 ]



ПОИСК



Упругие тела



© 2025 Mash-xxl.info Реклама на сайте