Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность при изгибе - Характеристики

Величина называется осевым моментом сопротивления или моментом сопротивления при изгибе. Момент сопротивления является геометрической характеристикой поперечного сечения балки, определяющей ее прочность при изгибе.  [c.152]

Характер влияния реакции на свойства композита с пластич-нмм и непластичным упрочнителем различен во многих отношениях. К сожалению, результаты систематических исследований взаимосвязи между состоянием поверхности раздела и прочностью данной системы при растяжении отсутствуют. Предметом исследования были другие механические характеристики, например усталостная прочность, прочность при изгибе, поперечная прочность эти данные включены в настоящий раздел с тем, чтобы развить по возможности общую картину поверхности раздела.  [c.176]


Появление чугуна с шаровидным графитом вызвало ряд изменений в классификационной характеристике чугунов. Предел прочности при изгибе, ранее являвшийся одним из основных классификационных признаков (в заводских условиях ему придавалось большее значение по сравнению с другим показателем — пределом прочности при растяжении), уже не фигурирует в современных стандартах, уступив место пределу прочности при растяжении. В отличие от ранее действовавших классификаций на чугун с пластинчатым графитом в классификациях, применяемых к чугуну с шаровидным графитом, предусмотрены основные требования к механическим свойствам — пределу текучести и относительному удлинению.  [c.208]

Основными характеристиками отливок из чугуна по ГОСТ 1412—54 являются предел прочности при изгибе (с определением стрелы прогиба) и предел прочности при растяжении. Отклонение от ГОСТа по показателям твердости обычно не служит браковочным признаком, однако величина твердости в отливках или в отдельных участках отливок может быть оговорена особо в технических условиях заказа. В этом случае величина твердости задается в зависимости от характера работы деталей.  [c.59]

Предел прочности при изгибе является сдаточной характеристикой для отливок из всех марок серого чугуна за исключением СЧ 00.  [c.69]

При изгибе и кручении наивыгоднейшим в отношении жесткости является коробчатое сечение, что наглядно видно из характеристики сечений, приведенных в табл. 288. По прочности при изгибе оно уступает лишь двутавровому, а при кручении — только трубчатому.  [c.435]

Прочность при изгибе при нормальной температуре составляет 200—250 МПа. Модуль упругости при нормальной температуре 172 ГПа, а при 1300—1400°С снижается примерно до 100 ГПа. С повышением пористости все прочностные характеристики снижаются почти линейно.  [c.125]

Здесь W - у у. — момент сопротивления при изгибе — геометрическая характеристика прочности поперечного сечения, которая вводится для симметричных относительно оси Ох сечений.  [c.407]

НО больше, чем в закаленном состоянии. Это является одной из важнейших характеристик быстрорежущей стали. В этом состояний быстрорежущие стали имеют наибольший предел текучести при сжатии и наибольшее сопротивление максимальным пластическим деформациям. Однако ударная вязкость в этом интервале температур несколько уменьшается, сталь становится чувствительной к нагрузкам на растяжение, но предел прочности при изгибе все же больше, чем после отпуска при температуре 400—450° С. Иногда после дисперсионного твердения быстрорежущие стали не содержат остаточного аустенита или содержат его, но в очень малых количествах (0,5— 2%). При этом предел прочности при изгибе все же больше, чщ у умеренно теплостойких ледебуритных инструментальных сталей с 12% Сг (см. табл. 69 и 67).  [c.217]


Резервом повышения стойкости твердосплавных вырубных штампов в листоштамповочном производстве является упрочнение твердых сплавов термической обработкой. Процесс упрочнения порошковых твердых сплавов существенно улучшает их служебные характеристики. Упрочнение твердых сплавов по оптимальным режимам позволяет в значительной степени повысить нх прочностные и деформационные характеристики предел прочности при изгибе н ударную вязкость до 30 %, работу пластиче-  [c.462]

Для выявления прочности характеристик портландцемента, шлакопортландцемента, пуццоланового портландцемента, глиноземистого цемента, магнезиального портландцемента и некоторых других видов цемента наиболее распространенными механическими испытаниями являются определение нормальной густоты и сроков схватывания цементного теста и определение предела прочности при изгибе и сжатии образцов в виде балочек, изготовленных из цементных растворов. Все эти испытания проводятся по ГОСТу 310—60 Цементы. Методы физических и механических испытаний .  [c.403]

Так как осевой момент сопротивления является характеристикой прочности при изгибе, то из формулы (115) можно заключить, что размеры сторон прямоугольника в и к) по-разному влияют на прочность балки сторона, параллельная силовой линии, входит в выражение в квадрате и потому влияет на прочность значительно сильнее, чем сторона, перпендикулярная к силовой линии.  [c.156]

Данные о пределах прочности при изгибе и растяжении и твердости по Бринеллю приняты по ГОСТу 1412—54. Предел прочности при сжатии и пределы выносливости указаны по литературным данным. Характеристики, стоящие в скобках, вычислены по формулам табл. 7.  [c.321]

По диаграммам изгиба очень просто определить следующие характеристики предел прочности при изгибе условный предел текучести при изгибе а/,0,1 полный прогиб упругий прогиб /у р пластичный прогиб / л полную работу разрушения а работу упругого разрушения ау р работу пластического разрушения а л-  [c.66]

Величина /л у = называется о с е в ы м м о м е н т о м сопротивления сечения и является геометрической характеристикой поперечного сечения балки, определяющей ее прочность при изгибе .  [c.122]

Характеристики прочности при изгибе 69  [c.69]

Прочность при растяжении и сжатии в направлении у оказывается на 60 % больше соответствующих значений характеристик направления х (см. табл. 5.11), в то время как различия в коэффициентах армирования для этих направлений не превышают 10%. Такое расхождение в значениях указанных прочностей в значительной степени обусловлено структурой армирования. Подтверждается это тем, что для стеклопластика первого типа, отличающегося схемой армирования от второго типа, пределы прочности при изгибе н сжатии в направлении X с учетом объемного содержания арматуры практически нс отличаются от значений указанных характеристик направления у. Значения прочности прй сжатии в направлении 2 обоих типов материалов оказались выше, чем значения прочности в двух других направлениях, в то время как содержание арматуры в первых ДЕ ух направлениях значн-  [c.154]

Несколько другой характер изменения уплотнения и графитизации от числа циклов имеют характеристики, полученные из опытов на изгиб (см. табл. 6.14). Увеличение числа циклов уплотнения с 7 до 13 весьма эффективно сказывается на значениях предела прочностн для всех направлений армирования, для модуля упругости — только для направлений с меньшим коэффициентом армирования (дг, у). В направлении г модуль упругости с увеличением числа циклов уплотнения заметно снн.жается, а после проведения графитизации при повышенной температуре его значение несколько увеличивается, но резко снижается прочность при изгибе (так же как и при растяжении). Для направлений с меньшим коэффициентом армирования (х, у) графитизация практически не оказывает заметного влияния на модуль упругости и прочность при изгибе (см. табл. 6.14).  [c.183]

Для стеклопластика АФ-10П на основе кремнеземной ткани КТ-И приведено исследование корреляционной связи между механическими и физическими характеристиками. Статистической обработке по разработанной программе на ЭВМ Минск-22 подвергались результаты испытаний на изгиб стеклопластиковых балочек, а также значения скоростей распространения ультразвука по основе Vq, утку Vgg, в диагональном направлении О45 и по толщине vs, диэлектрической проницаемости по основе Bq, утку 690, результаты определения стеклосодержания / и плотности р. Анализ полученных данных (табл. 4.9) показывает, что для случаев парной корреляции наблюдается сравнительно низкая статистическая связь между прочностью при изгибе и физическими характеристиками. Несколько более эффективной по сравнению с линейной является нелинейная парная корреляция.  [c.166]


Интересные результаты по установлению эмпирической мно-жественнойЗкорреляции между прочностью при изгибе и физическими характеристиками были получены также в работе [201. В данной работе было подтверждено, что увеличение числа коррелируемых физических характеристик существенно увеличивает коэффициент корреляции и снижает ощибку аппроксимации. Из табл. 4.10 видно, что использование скорости ультразвука, диэлектрической проницаемости и коэффициента теплопроводности снижает ошибку аппроксимации по полученным уравнениям до 3,4%.  [c.166]

Исследованию прочности композитов с наполнителем посвящен ряд работ. В работе [7.28] приведены результаты исследования предела прочности при статическом растяжении, а Б работах [7.29, 7.30]—результаты исследования на усталостную прочность при изгибе. В рассматриваемом случае происходят различные виды разрушения, среди которых имеют место разрушение поверхностных слоев, разрушение наполнителя, разрушение на границах, отделяюнхих поверхностные слои от наполнителя. Это обстоятельство необходимо учитывать при рассмотрении прочностных характеристик.  [c.221]

Все это указывает на значительное повышение жесткости материала при воздействии повышенных температур. В процессе теплового старения прочность при изгибе (так же как и удельная ударная вязкость) после упрочнения практически остается без изменения до конца испытаний в отличие от светотеплового старения, где после упрочнения наблюдается снижение прочности при изгибе, что связано с разрушением поверхностного слоя материала. Прочность при растяжении поликапролактама незначительно повышается во время теплового старения, а в процессе светотеплового старения снижается приблизительно на 20 % от исходной по тем же причинам, по которым происходит снижение удельной ударной вязкости и прочности при изгибе. Испытания, имитирующие атмосферное старение, следует проводить по методике ГОСТ 10226—62. Причем транспортные агрегаты рекомендуется испытывать в трех климатических зонах умеренноконтинентальные (Ленинград, район Среднеевропейской части страны) континентальной (район Ферганы и Ташкента) и влажных субтропиков (район Батуми). В табл. II представлены температурные характеристики этих зон.  [c.130]

Образовавшаяся на различных этапах получения графита пористость обусловливает многие его характеристики. Хатчеон и Прайс [212, р. 645] предложили эмпирические зависимости, связывающие электросопротивление, теплопроводность, предел прочности при изгибе, газопроницаемость углеродных материалов с их пористостью. Первые две зависимости носят линейный характер, а две последние — экспоненциальный и степенной соответственно. По Кинчину [198], удельное электросопротивление реакторного графита обратно пропорционально плотности в четвертой степени. Мрозовский [210 с. 195] вывел уравнения, связывающие свойства с плотностью отдельных компонентов материала. Они, однако, справедливы лишь для оптимального содержания связующего. В. А. Черных и др. [148], исходя из гранулометрического состава материала, вывели уравнение, связывающее предел прочности при сжатии с общей пористостью, справедливое при плотности материала >1,56 г м .  [c.27]

Графит — хрупкий материал. По этой причине (а также учитывая его неоднородность) размеры — масштабный фактор — геометрически подобных образцов оказывают влияние на результаты определения прочностных характеристик. В этой связи авторы работы [58, с. 181] рекомендуют оптимальные размеры образцов для различных видов испытаний. Так, предел прочности при сжатии графита с плотностью 1,6 г/см и выше следует определять на образцах диаметром 20 мм и высотой 40 мм. Испытания при растяжении рекомендуют проводить на образцах галтельного типа общей длиной 130 мм и диаметром рабочей части 20 мм (для мелкозернистых материалов диаметр образца 10 мм). Для определения предела прочности при изгибе за стандартные приняты призматические образцы с размерами 20x20x100 мм.  [c.73]

Основной механической характеристикой стали, определяемой при испытаниях на изгиб, является предел текучести о предел прочности при изгибе стальных образцов, как правило, определить не удается, так как образцы из пластичных материалов невозможно довести до разрушения изгибо.м.  [c.462]

Минералокерамика ЦМ-332 обладает высокой огнеупорностью, которая позволяет применять ее при высоких температурах. Исследования показали, что одна из важнейших характеристик конструкционного материала — твердость — изменяется с нагревом значительно меньше у образцов минералокерамики, чем у твердых сплавов. По данным [108] понижение твердости HR А минералокерамики при нагреве до 1000° С составляет 10,8% от первоначальной, а поданным [109],—снижение твердости происходит с HV 2050 до HV 940 кПмм (при 900° С). Прочность при изгибе при повышенных температурах до 800° С практически не снижается [ 110 ].  [c.382]

Установлено, что при повышении температуры обжига ВеО до 1800—2000°С наблюдается значительный рост его отдельных кристаллов. По мере роста кристаллов снижаются все прочностные характеристики спеченного ВеО. Предел прочности при растяжении оксида бериллия при нормальных температурах в 8—10 раз меньше, чем при сжатии, и составляет 120—150 МПа. Предел прочности при изгибе ВеО высокой плотности с мелкой кристаллизацией зерен составляет около 300 МПа, а изделий с плотностью 2,8—2,9 г/см —150 — 200 МПа. С повышением размера зерен этот показатель резко падает, как и с повышением температуры нагрева. По некоторым данным, этот показатель составляет, МПа при 20°С — 182, при 550 С — 126, при 1000Х —  [c.133]

Изоду) [2]. Из данных, приведенных на рис. 3.1, следует, что для пласти ка на основе найлона 66 существует сбалансированность всех трех механи ческих характеристик при испытании во влажной среде. Максимальнь модуль упругости имеет материал на основе полифениленсульфида, не его ударная вязкость низка. Наибольшей ударной вязкостью обладает на полненный углеродными волокнами ударопрочный найлон, но у неге очень низкий модуль упругости. Так как механические свойства наполнен ных волокна.ми термопластов сильно различаются, необходимо классифицировать их также в соответствии с областями применения. Для иллюстрации на рис. 3. 2 приведены температурные зависимости модуля упругости и прочности при изгибе термопластов, армированных углеродными волокнами [3], а на рис. 3. 3 - триботехнические характеристики армированных термопластов [3]. Из этого рисунка следует, что термопласты, армированные углеродными волокнами, обладают лучшими триботехническими свойствами по сравнению с неармированными или содержащими стекловолокна термопластами. Характерно, что армированные пластики  [c.62]


Шестерни из пластмасс обладают способностью к самосмазыванию, имеют высокие химическую стойкость и ударную вязкость, являются низкощумными и т. д. Но по сравнению со стальными шестернями они выдерживают меньшие силовые нагрузки. Вследствие этого пластмассовые шестерни используются главным образом в редукторах различных контрольно-измерительных приборов. Однако если армировать пластмассовые шестерни высокопрочными волокнами, то можно повысить их стойкость к силовым воздействиям. Одной из основных прочностных характеристик шестерен является прочность зубьев при статическом изгибе. Для того чтобы выяснить эффективность армирования волокнами зуба шестерни, к которому приложена изгибающая нагрузка, прежде всего необходимо рассчитать распределение напряжений в изотропном зубе шестерни под действием изгибающей нагрузки. На рис. 5.23 показана модель зуба шестерни (модуль т = 5, число зубьев Z = 30, угол приложения нагрузки а = 20°), использованная для расчета распределения напряжений [12]. Как показано на рисунке, в точках F и F пересекаются центральная линия трохоиды, описанной относительно центра закругления зуба, и основная огибающая зуба. Введем систему координат OXY с центром в точке пересечения линии FF и осевой линии зуба шестерни. Нагрузка Р действует перпендикулярно к поверхности зуба у его края. При анализе напряжений в зубе шестерни предполагают плоское деформированное состояние и используют метод конечных элементов. На рис. 5.24 показано распределение главных напряжений внутри зуба шестерни, изготовленной из неармированной эпоксидной смолы. К краю этого зуба приложена нагрузка 9,8 Н/мм. Видно, что значительные напряжения возникают только вблизи поверхности зуба шестерни. Следовательно, если армировать волокнами поверхностный слой зуба, то можно ожидать повышения его прочности при изгибе.  [c.197]

Плотность цементно-фибролитовых плит 250...500 кг/м . В зависимости от плотности цементный фибролит вьшускают трех марок Ф-300, Ф-400, Ф-500. Прочностные характеристики фибролита зависят от его плотности и толщины изделия (плит). Так, предел прочности при изгибе фибролитовой плиты Ф-400 толщиной 75 мм составляет 0,7 МПа. Модуль упругости при изгибе 300...500 МПа. Теплопроводность цементно-фибролитовых плит 0,08...0,1 Вт/(м-К). Водопоглощение 35...45%. Влажность должна быть не более 20% (по массе). Фибролит относится к биостойким трудносгораемым материалам.  [c.251]

Испытания на длительную прочность при изгибе образцов, имитирующих реальные сварные стыки, являясь переходным видом испытаний от лабораторных к испрятаниям конструктивной прочности, позволяют оценить конструктивные и технологические особенности изделия и влияние большинства факторов характерных для эксплуатации. В то же время получаемые с помощью этих испытаний результаты носят в первую очередь качественный характер и позволяют ответить на вопрос о возможности или невозможности локальных разрушений, не оценивая их интенсивности. Наблюдаемое при появлении этих разрушений снижение длительной прочности на 15—20% является относительно небольшим и не может служить количественной характеристикой склонности сварных соединений к локальным разрушениям. В связи с этим указанные испытания следует использовать в качестве конечной качественной стадии оценки ранее полученных результатов лабораторных количественных методов с учетом конструктивных и технологических факторов реальных сварных соединений.  [c.139]

Рабочие характеристики газонаполненных пластмасс (указаны нижние и верхние пределы) кажущаяся плотность 25...300 кг/м рабочая температура -60...300 °С временное сопротивление 0,1...4,5 МПа предел прочности при изгибе — 0,5...7,0 МПа ударная вязкость — 0,2...1,9кДж/м.  [c.156]

Японской фирмой Норитаке разработан новый высокопрочный композит с керамической матрицей, армированный углеродными волокнами Материал обладает высокой ударной вязкостью, которая в 6 раз выше ударной вязкости традиционных керамических материалов и не ухудшается в интервале температур до 1200 °С. Его изготовляют методом фила-ментарной намотки, применяя в качестве исходного связующего суспензию из нитрида кремния или муллита. После сущки заготовку спекают при 1700 °С методом горячего прессования под давлением 35 МПа. Для получения материала с высокими характеристиками по прочности на разрыв и вязкости разрущения, содержание углеродных волокон в материале должно составлять от 30 до 45 %. Такой материал имеет вязкость разрущения 29 МПа и прочность при изгибе 690 МПа в случае использования в качестве матрицы нитрида кремния, и 18 и 610 МПа соответственно в случае использования муллита.  [c.240]

Для изучения термического разложения эпоксистеклопластиков и эффектов отверждения был использован анализатор Дел-сен D// [33, 34]. Возрастание тангенса угла диэлектрических потерь обусловлено началом термического разложения (падение прочности при изгибе) уже при температуре 150. .. 260 °С. Для этих экспериментов диэлектрическая постоянная является не такой чувствительной характеристикой, как тангенс угла диэлектрических потерь. Изменение диэлектрической постоянной и тангенса угла диэлектрических потерь в процессе отверждения может служить для определения оптимальных температурных и временных условий отверждения и контроля полноты отверждения. Измерения емкости могут быть также применены для определения содержания влаги в ламинатах в Сандвичевых конструкциях.  [c.478]

Работа остаточной деформации может быть определена испытаниями на изгиб и на кручение как площадь диаграмм, снятых при изгибе и кручении (рис. 20). Работу разрушения при изгибе А обычно выражают в джоулях. Ислытание на изгиб, при котором напряженное состояние более благоприятно, чем при чистом растяжении, весьма пригодно для оценки высокотвердых, ледебуритных и поэтому хрупких инструментальных сталей и материалов. В специальной литературе часто можно встретить случаи использования значений прочности на изгиб для характеристики вязкости ледебуритных сталей. Для оценки вязкости быстрорежущих сталей часто применяют также испытание на кручение, которое может характеризовать прежде всего ожидаемое поведение спирального сверла. Однако этот метод определения намного сложней и дороже испытания на изгиб и растяжение. Работа разрушения, определяемая разными методами, из-за влияния особенностей распределения напряжений и формы образцов не может быть сопоставлена сами по себе эти способы могут быть использованы для сравнительной оценки сталей, их структуры и вязкости.  [c.38]

Изменения предела прочности и предела текучести при изгибе, твердости быстрорежущих сталей марки R6, закаленных с различных температур, в зависимости от температуры отпуска приведены в табл. 90. Температуры нагрева под закалку, обеспечивающие наибольшую твердость и наибольший предел прочности при изгибе, тоже не совпадают, но путем вариаций температур отпуска можно установить оптимальное значение для того и другого. Предел прочности на изгиб и ударная вязкость быстрорежущей стали марки R6, полученной с помощью электрошлакового переплава, при той же твердости существенно выше тех же характеристик стали с более неоднородной структурой. Данные о влиянии трехкратного отпуска по одному часу на предел прочности при изгибе быстрорежущих сталей марок R6 (6—5—2) и R10 (2—8—1) приведены в табл. 91. Предел прочности на изгиб быстрорежущей стали типа 6—5—2, полученной путем электрошлакового переплава, в случае, почти такого же предела текучести при сжатии немного меньше, чем быстрорежущих сталей типа 2—8—1, легированных почти исключительно молибденом, но существенно больше, чем у сталей, содержащих 18 % W (см. табл. 78). Данные о влиянии температуры закалки на предел прочности при изгибе и работу разрушения при изгибе в продольном и поперечном направлениях для сталей марки R6, полученных электрошлаковым переплавом и обычного качест,-ва, приведены в табл. 92. Благоприятное воздействие электрошлакового переплава очевидно как в продольном, так и в поперечном направлениях. Значительно уменьшается анизотропия свойств.  [c.225]


Возможности произвести оценку сталей высокой твердости с помощью этих характеристик различны. Основным критерием для применения сталей высокой твердости (более НКС55) является их вязкость. Как показывает опыт, для оценки вязкости твердого материала достаточно знать предел прочности при изгибе, условный предел текучести при изгибе и работу пластического разрушения. Во многих случаях для оценки вязкости используют лишь условный предел текучести при изгибе и работу пластического разрушения. Все же одних данных о работе пластического разрушения для оценки вязкости недостаточно, поскольку при равной работе изгиба пределы текучести могут быть различны.  [c.66]

Характеристики стеклоцемента плотность 1 г/ж предел прочности при изгибе ие меяее 150 кгс/сж температуростойкость до -f60° морозостойкость при 25 циклах замораживания и оттаивания 90% прочности, водопоглощетие не более 24%-  [c.769]

Порошковые быстрорежущие стали. Предприятиями УкрНИИспецсталь и Днепроспецсталь освоен выпуск быстрорежущих сталей методом порошковой металлургии. Порошковые стали имеют карбидную неоднородность по 1—2-му баллу, характеризуются повышенной шлифуемостью и пластичностью при холодной и горячей деформации, обладают повышенной (на 500— 700 МПа) прочностью при изгибе и в 1,5—2,5 раза более высокой стойкостью по сравнению с быстрорежущими сталями аналогичного состава обычного производства. Высокая прочность сталей при изгибе позволяет работать на повышенных подачах с сохранением заданных характеристик.  [c.40]

При недостаточно высокой механической прочности бумаги в исходном состоянии и сильном снижении ее вследствие низкой нагревостойкости при изготовлении гетинакса, последний не может быть получен с требуемыми механическими характеристиками. Менаду тем согласно ГОСТ 2718-54 к некоторым маркам гетинакса предъявляются весьма высокие требования по механической прочности предел прочности при растяжении не ниже 1 ООО кГ1см в продольном направлении, предел прочности при изгибе не менее 1 400 кГ/см , удельная ударная вязкость не менее 20 кГ см/см в продольном направлении и не менее 15 кГ-см/см в поперечном направлении. Гетинакс должен достаточно хорошо обрабатываться резанием, он должен без растрескивания и сколов допускать сверление, распиловку, обточку, фрезерование. Гетинакс в листах небольших толщин должен 296  [c.296]


Смотреть страницы где упоминается термин Прочность при изгибе - Характеристики : [c.214]    [c.384]    [c.21]    [c.155]    [c.93]    [c.126]    [c.370]    [c.163]    [c.146]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.138 ]



ПОИСК



Характеристика изгиб



© 2025 Mash-xxl.info Реклама на сайте