Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел выносливости (усталости) ограниченный

Под ускоренными методами определения пределов выносливости (или пределов выносливости на ограниченной базе) металлов подразумеваются методы, дающие возможность определить величину предела выносливости за меньшее время и при испытании меньшего количества образцов, чем это следует из общепринятой методики, когда предел выносливости определяется путем построения кривой усталости на базе 10 —10 циклов по результатам испытания 10—15 и более образцов при частоте нагружения 20—100 Гц, что требует длительного времени.  [c.215]


Следует отметить, что деление на малоцикловую и многоцикловую усталость материалов довольно условно, хотя в целом оправдано. Тем не менее, на рис. 1.11-1,15 приведены экспериментальные кривые усталости с резким физическим пределом выносливости, ветвь ограниченной выносливости которых почти целиком лежит в малоцикловой области (в интервале от 2 10 до 8 10 циклов). Область многоцикловой усталости которая по ГОСТУ начинается с 5 Ю", на этих рисунках практически отсутствует. Перегиб у этих кривых усталости расположен в конце малоцикловой области и далее кривая сразу выходит на физический предел выносливости. Такой эффект наблюдается в случае аморфных материалов, высокопрочных материалов или при испытании образцов с острым надрезом, когда с первых циклов нагружения в области надреза образуется локальная зона пластической деформации. В этой зоне металл быстро упрочняется и постепенно плотность дислокаций достигает критического значения, которое соответствует зарождению усталостной трещины [13-17].  [c.15]

С проблемой долговечности машин эти вопросы связаны в том случае, если деталь имеет ограниченный срок службы и выходит из строя по причине наступления предела выносливости (усталости). Это может иметь место либо при преднамеренном расчете детали 16 592 243  [c.243]

Коэффициент Кщ учитывает возможность повышения допускаемых напряжений для кратковременно работаюш их передач (при участке N, iyN длительно работающие передачи) кривая усталости приближенно параллельна оси абсцисс. Это значит, что на этом участке предел выносливости не изменяется, а /Сял=1. что и учитывает первый знак неравенства в формуле (8.59). Второй знак неравенства предусматривает ограничение напряжений по условию отсутствия пластических деформаций на поверхностях зубьев.  [c.148]

На ограниченную долговечность рассчитывают детали, изготовленные из материалов, не обладающих отчетливо выраженным пределом выносливости или имеющих круто падающую кривую усталости (концентра,-ционно-чувствительные материалы), а также детали, которым по условиям габарита или массы нельзя придать размеры, определяемые пределом выносливости. Так же рассчитывают машины и механизмы, работающие с низкой частотой циклов, й механизмы, у которых периоды работы чередуются с длительными перерывами или работой при малых нагрузках (грузоподъемные машины периодического действия), т. е. механизмы, у которых общее число циклов за весь период службы меньше числа циклов, соответствующего пределу выносливости.  [c.282]


При циклическом нагружении эффективный коэффициент концентрации напряжений упрощенно определяют на основании кривых усталости гладкого образца и образца с концентратором напряжений (рис. 175) как отношение их пределов выносливости (к, = Оо/а) или разрушающих напряжений в области ограниченной долговечности при одинаковом числе циклов N (1 э = сто/а ).  [c.299]

Действие контактных напряжений ниже предела выносливости относительно больше, чем изгибных, и поэтому для них вводится дополнительное ограничение не учитывается повреждающее действие переменных напряжений за общим числом циклов нагружений 2,4Ы с,> где Nhq — число циклов до перелома кривой усталости.  [c.189]

Коррозионная усталость часто бывает причиной неожиданного разрушения вибрирующих металлических конструкций, рассчитанных на надежную работу в воздушной среде при нагрузках ниже предела выносливости. Например, неточно центрированный вал гребного винта на судне будет нормально работать до тех пор, пока не появится течь и участок вала, выдерживающий максимальные знакопеременные нагрузки, не окажется в морской воде. Тогда в течение нескольких дней могут образоваться трещины, из-за которых вал быстро разрушится. Стальные штанги насосов для откачки нефти из буровых скважин имеют ограниченный срок службы ввиду коррозионной усталости, возникающей в буровых водах. Несмотря на применение высокопрочных среднелегированных сталей и увеличение толщины штанг, разрушения этого типа приносят миллионные убытки нефтяной промышленности. Металлические тросы также нередко разрушаются вследствие коррозионной усталости. Трубы, по которым подаются пар или горячие жидкости, могут разрушаться подобным образом, вследствие периодического расширения и сжатия (термические колебания).  [c.157]

Для случаев, когда кривая усталости не имеет горизонтального участка ( в частности, некоторые легированные стали, сплавы цветных металлов), вводят понятие предела ограниченной выносливости. Это наибольшее значение максимального (по абсолютной величине) напряжения цикла, при действии которого образец еще не разрущается при определенном (задаваемом) числе циклов. Для указанных материалов, согласно ГОСТ 2860—76, принимают Ао=10 циклов. Безусловно, указанные сведения должны быть сообщены учащимся. Особенно обращаем внимание преподавателей на строгое разграничение понятий предел выносливости и предел ограниченной выносли-  [c.175]

Вторая форма кривой усталости (рис. 6.19,6) характеризуется отсутствием точки перелома Ь. Эта кривая следует зависимости (6.48) на всем своем протяжении. В этом случае пределом усталости считают то напряжение, которое соответствует некоторому стандартному числу циклов Мс называемому базовым. Для закаленной стали, например, принимают Л/д = 10 , т. е. равным тому числу циклов нагружения, которое соответствует точке Ь на кривой усталости незакаленной стали. Напряжение называют пределом ограниченной выносливости (в отличие от предела выносливости, соответствующего базовому числу циклов I,-лгg).  [c.172]

При испытаниях на усталость образцов или деталей обнаруживается разброс определяемых значений. Это относится к значениям предела выносливости и в особенности ограниченной выносливости или усталостной долговечности. Статистическая природа процесса усталостного разрушения предопределяет рассеяние результатов усталостных испытаний в большей степени, чем других видов испытаний.  [c.54]

Метод Бойцова. Эксперимент проводится по методу Локати, но с тем отличием, что расчет оценок предела выносливости осуществляется не по условным кривым усталости, а по кривой усталости, полученной экспериментально на ограниченном количестве образцов [131]. В результате относительно кратковременного эксперимента и при использовании примерно такого же количества образцов, что и при методе лестницы , наряду с оценкой величины предела выносливости по методу Локати можно оценить и меру его рассеяния, а также определить расчетные показатели кривой усталости—т и Л о (показатель наклона левой ветви кривой усталости и координату точки перелома кривой усталости).  [c.85]


При воздействии на металл коррозионных сред и фреттинг-кор розии на кривой усталости отсутствует горизонтальный участок, по этому установить можно только ограниченный предел выносливости. Базу испытаний значительно увеличивают, если ставится задача выяснить влияние среды, фреттинг-коррозии и т. п,  [c.109]

В результате исследования было, таким образом, подтверждено, что поверхностный наклеп является эффективным средством повышения сопротивления малоцикловой усталости всех исследованных материалов. Показано, что влияние наклепа в большей степени сказывается на увеличении ограниченного предела выносливости по разрушению. Предел выносливости по трещинообразованию изменяется значительно меньше. Полученные закономерности показывают, что как и при обычной многоцикловой усталости, остаточные сжимающие напряжения, возникающие при поверхностном наклепе, тормозят распространение трещин малоцикловой усталости.  [c.168]

Таким образом, с помощью испытания одной серии усталостных образцов исследуется вся область существования трещин от их возникновения до развития на все сечение образца (излом). По точкам, характеризующим полное разрушение образца, строится кривая малоцикловой усталости по излому, а по нижней границе точек, характеризующих наличие усталостных трещин, строится кривая трещинообразования. Одновременно определяются ограниченные пределы выносливости по излому и по трещинообразованию на выбранной базе испытаний.  [c.293]

На рис. 1 приведено в качестве примера изменение ограниченных пределов выносливости в зависимости от температуры, свидетельствующее о сложном влиянии температуры на сопротивление усталости. Характерно, что вид установленных закономерностей опре-де.ляется базой испытаний. На малых базах (примерно до 10 циклов) они аналогичны изменению пределов прочности и текучести, т. е. с повышением температуры испытаний сопротивление циклическим нагрузкам монотонно снижается На больших базах (>-10 циклов) максимум появляется в области температур 0,55—0,60 Т ц.  [c.377]

Анализ результатов исследований сопротивления усталости жаропрочных никелевых сплавов в связи с их структурной нестабильностью в диапазоне температур, превышаюш,их 0,6 , л, показал наличие устойчивой корреляционной связи между ограниченными пределами выносливости и средним размером частиц упрочняющей фазы в виде обобщенной зависимости [111  [c.379]

Траектории циклических несинхронных нагружений ограниченной долговечности могут описываться не доходя КОД, где заданные кривые усталости преломляются. Так, на рис. 1 траектория 3 долговечностью 2 10 циклов не достигает КОД 2 10 . По этой причине й вычисляется экстраполированием заданных кривых усталости ниже физических пределов выносливости.  [c.404]

При повышенных температурах и действии переменных напряжений сопротивление усталости характеризуется кривыми усталости, которые в этом случае не имеют горизонтального участка, и пределами выносливости (ограниченными), соответствуюш,ими определенному числу циклов повторения напряжений. Данные по величине этих пределов даны на фиг. 9 в виде отношения предела выносливости при данной повышенной температуре (o i)(o к пределу выносливости при температуре 20°. Величины пределов выносливости углеродистых сталей при нормальной температуре приведены в табл. 2, для некоторых конструкционных и жаропрочных сталей — в табл. 10.  [c.477]

Расчет на усталость по строительным нормам и правилам [1] ограничен снизу базовой долговечностью Л а = 5 х 10 циклов. Для проведения поверочного расчета при меньшем числе циклов нагружения, необходимость которого вытекает из рассмотрения условий эксплуатации конструкций ( 1), можно воспользоваться закономерностями разрушения сварных соединений в области малоцикловой усталости (см. 4). Кривая циклической прочности сварного соединения в диапазоне от однократного нагружения до числа циклов Л а может быть схематически представлена в двойных логарифмических координатах в соответствии со схемой, приведенной на рис. 9.20. Ограниченный предел выносливости Ств при Уб выбран правой точкой для построения кривой малоцикловой усталости в связи с тем, что основные данные, полученные при усталостных испытаниях, относятся к долговечностям 5-10 —  [c.187]

Высокая эффективность поверхностного наклепа для крупных деталей подтверждается и данными, полученными непосредственно при эксплуатации упрочненных деталей. Эти данные важны ввиду ограниченного количества лабораторных средств для испытаний крупных образцов на усталость, большой длительности и высокой стоимости таких испытаний. Особенно наглядно упрочняющий эффект проявляется у деталей, работающих в условиях ограниченной долговечности, при напряжениях, превосходящих предел выносливости. Характерный пример такого рода деталей — штоки штамповочных молотов. В месте запрессовки относительно тонкого штока в массивную бабу при работе молота создается высокая концентрация напряжений, приводящая к частым поломкам штоков, несмотря на применение для их изготовления высокопрочных легированных сталей.  [c.158]

На рнс. 6.27 в качестве примера сопоставлены эмпирические кривые распределения пределов ограничений выносливости сплавов АВ и МЛ5, построенные по результатам обычных и ускоренных испытаний. Приведенные данные показывают удовлетворительное соответствие характеристик сопротивления усталости, найденных указанными методами. Расхождения в пределах выносливости не превышают 5— 8 МПа. Аналогичные результаты получены и для других марок алюминиевых и магниевых сплавов, а также для углеродистой и легированной сталей.  [c.196]


Многие металлы (обычно цветные и их сплавы) не имеют горизонтального участка на кривой усталости. В этом случае определяют ограниченный предел выносливости — наибольшее напряжение, которое выдерживает металл (сплав) в течение заданного числа циклов нагружения.  [c.103]

Применение ВМТО для кремнистых и хромомарганцовых сталей повышает предел выносливости и ограниченную (малоцикло-вую) усталость. Одновременно с, ростом предела выносливости в результате ВТМО повышается и вязкость разрушения в условиях плоскодеформированного состояния (/ J. Так, если после закалки стали 60С2Х при 870° С и отпуске при 425° G — Ki = 168 кгс/мм Д, а работа разрушения Gi 11,5 кгс/см, то после ВТМО и того жё отпуска = 230 кгс/мм / а Gij. = 23 кгс/см [10 J.  [c.38]

Расчет на усталость при циклических контактных напряжениях, так же как и при циклических нормальных или касательных напряжениях, базируется на кривых усталости. На рис. 8.39 кривая усталости построена в логарифмических координатах — макси- 4 мальное напряжение цикла, — предел выносливости при отнуле-вом цикле, Ояол — предел ограничен- ной выносливости, Nh — цикличе-ская долговечность (до разруше-кия), N,-,0 — абсцисса точки перелома кривой усталости, Пн—текущее число циклов  [c.145]

Нисходящая ветвь кривой усталости соответствует области ограниченной долговечности. По ней можно определить долговечность (в циклах), которую будут иметь детали, нагруженные напряжениями, превосходящими предел выносливости, или напряжения, являющиеся предельны.ми при заданной долговечностгг.  [c.280]

Каждая точка кривой АВС диагра.м.мы характеризует цикл. Точка А соответствует пределу выносливости при сим.метрнчном цикле (От=0 Ца=Ц 1) точка С — пределу прочности при статическом напряжении (сТт=о в о а=0) точка В — пределу выносливости при отнулевом цикле (ат=о а)- Площадь диаграммы, ограниченная кривой АВС и осями координат, определяет область безопасных (в отношении усталости разрушений) циклов нагружений. Пусть точка М, характеризующая заданный цикл (Од, Ст), рас-  [c.249]

Впервые циклическая долговечность для симметричного цикла была исследована Велером, который установил, что каждой амплитуде Оа соответствует своя циклическая долговеч-ность N, т. е. число циклов напряжений, Е1ыдерживаемых кон- О N струкцией до усталостного разрушения. График, характери- Рис. 8.20 зующий зависимость между амплитудами цикла Оа и циклической долговечностью N для одинаковых образцов, построенный по параметру коэффициента асимметрии цикла (рис. 8.20), носит название кривой усталости. Для сталей кривая усталости при некотором напряжении a/j, называемом пределом выносливости, имеет тенденцию выхода на асимптоту, параллельную оси ON. При N 10 кривая усталости практически приближается к этой асимптоте. Таким образом, при а с практически разрушение не происходит при очень большом числе циклов. Однако у материалов типа алюминия, меди и других не существует определенного предела выносливости и кривая усталости приближается к оси ON при большом числе циклов. Для таких материалов назначается предел ограниченной выносливости а/ лг — наибольшее напряжение цикла, которое материал выдерживает при заданном Обычно yV ,p = ]0 (рис. 8.21).  [c.173]

В результате испытаний для каждой из исследуемых сталей были построены кривые усталости по разрушению и трещинооб-разованию для поверхностно-упрочненных по концентраторам напряжений серий образцов и образцов без упрочнения. Были определены также соответствующие ограниченные пределы выносливости (табл. 38).  [c.166]

Интересно, что поверхностный наклеп образцов стали 12Х18Н9Т, испытывавшихся на малоцикловую усталость при повышенной температуре, также дал очень хорошие результаты (см. табл. 38). Ограниченный предел выносливости по трещино-  [c.167]

Результаты испытаний приведены в таблице, из которой видно, что сопротивление образованию трещин ыалоцикловой усталости и сопротивление разрушению при температуре 813 К мало изменяются после различных режимов термической обработки. Ограниченный предел выносливости но трещинообразованию исследованной ста.ли при этой температуре колеблется в интервале от 300 до 340 МПа, а ограниченный предел выносливости по излому — в интервале 380—440 МПа. При этом различие между указанными пределами при температуре 813 К гораздо меньше, чем при 623 К. Вместе с тем величины пределов по трещинообразованию при 813 п 623 К различаются незначительно. Следовательно, повышение температуры испытаний гораздо больше влияет на развитие трещины мало-цикловой усталости, чем иа ее образование.  [c.294]

При воздействии умеренных температур — менее 1075 К в течение 4000 ч сплав ЭИ867 упрочняется, и характеристики сопротивления усталости повышаются па 15—20 % за счет довыделеиия у -фазы и незначительного подрастания ее первичных частиц. Высокое сопротивление деформации при циклическом нагрунгении при умеренных температурах обусловлено однородным распределением в матрице когерентных частиц у -фазы в виде плотной объемной сетки, аффективно тормозящих дислокации. При температуре 1075 К, составляющей примерно 0,6 Тпл, пределы выносливости стабильны и сохраняют г, ) Сокий уровень. Стадия, соответствующая диапазону высоких температур, отличается разупрочнением и снижением ограниченных пределов выносливости на 20—25 % в связи с коагуляцией частиц, изменением их морфологии и частичны.м растворением.  [c.378]

МПа превышает предел выносливости) вследствие больших потерь на внутреннее трение образцы разогреваются и теряют устойчивость. Жидкая коррозионная среда при уровнях напряжений выше предела выносливости охлаждает образец и увеличивает его долговечность. Периодическое смачивание 3 %-ным раствором Na I нагретой до 230—250°С стали при низких амплитудах циклических нагрузок также резко снижает ее сопротивление усталостному разрушению. Условный предел выносливости снижается с 185 до 145 МПа. При уровнях циклических напряжений выше предела выносливости электрохимическое воздействие коррозионной среды не успевает существенно проявиться ввиду сравнительно небольшого времени до разрушения, в то время как из-за охлаждающего эффекта ограниченная долговечность стали увеличивается. Аналогичные результаты получены и другими авторами. Следует отметить, что такое заключение не является универсальным для разных металлов. Оно справедливо для тех металлов и сплавов, для которых повышение температуры образца (от комнатной и выше), например, в результате циклического деформирования/сопровождается монотонным снижением сопротивления усталости. К таким материалам относятся, в частности, хромоникелевые стали.  [c.63]

На рис. 88 приведены результаты исследования усталости и коррозионной усталости стали 13Х12Н2ВМФ после обкатки. Эти результаты находятся в соответствии с данными других исследователей и показывают, что ППД гладких образцов повышает их предел выносливости на 20— 30 %. По влиянию обкатки на коррозионную усталость сталей нами получены чрезвычайно важные с практической точки зрения результаты, четко указывающие на ограниченность защитного действия поверхностного пластически деформированного слоя. Действительно, при базе до 5-10 -10 10 цикл нагружения выносливость стали после ППД в 3 %-ном растворе Na I мало отличается от выносливости в воздухе, т.е. подтверждается высокая эффективность ППД как метода повышения сопротивления коррозионно-усталостному разрушению. Однако увеличение базы испытания выше указанной привело к неожиданным результатам — резкому снижению уровня разрушающих циклических нагрузок. В довольно узком диапазоне долговечности разрушающее напряжение у обкатанных образцов в коррозионной среде снизилось с 550—600 МПа до 200— 240 МПа, т.е. в 2—3 раза. Условный предел коррозионной выносливости образцов, подвергнутых ППД  [c.161]


Как указывалось выше, одним из технологических приемов повышения сопротивления усталости и особенно коррозионной усталости углеродистых, низколегированных и аустенитных нержавеющих сталей является алмазное выглаживание. При обеспечении одинаковой с полированием шероховатости поверхности образцов (9—10 класс) выглаживание увеличивает глубину и степень наклепа, микротвердость поверхностных слоев. Предел выносливости образцов возрастает на 20-30 %, а условный предел коррозионной выносливости образцов из сталей 40ХН2МА и 12Х18Н10Т в нейтральных электролитах при ограниченной базе 10 — 3 10 цикл — до 2 раз [173, с. 96-98, 218].  [c.164]

Пределом выносливости называют наибольшее значение максимального напряжения цикла, не вызывающего разрушение после произвольно большого числа циклов (практически o>10 ). Второй тип кривой усталости характеризуется непрерьшным пояижением (рис. 2.2, линия 2). Такое поведение наблюдается у сталей ори высоких температурах в коррозионной среде. Для материалов этого типа устанавливают предел ограниченной выносливости, т. е. напряжение для заданного числа циклов.  [c.18]

Ранее указывалось, что при испытаниях на усталость резьбовых соединений (и других деталей) обнаруживается большой разброс экспериментальных значений ограниченной выносливости по отношению к средним значениям. Это обусловливается статической природой процесса усталостного разрушения, а также неоднородностью микро<лруктуры металла и микрогеометрии поверхностного слоя. Отметим, что на разброс долговечности и пределов выносливости влияют факторы, связанные с технологией изготовления и испытания образцов.  [c.220]

В случае, когда напряженное состояние в опасном объеме представляет собой растяжение-сжатие по несимметричному циклу, дело обстоит сложнее. Напомним, что в этих обстоятельствах условие (20.15) возникновения предельного состояния соответствует лишь точке перелома на кривой усталости. Нам же нужно обобщить эту формулу на случай, когда разрушения возможны при N< No. Для этого следует от понятия предела выносливости сг 1 перейти к понятию предела ограниченной выносливости сг ]л/, что позволяет вместо (20.15) получить более общее выражение  [c.367]

При работе детали в условиях, вызывающих коррозию (например, при нахождении детали в воде), сопротивление материала переменным нагрузкам понижается, кривая усталости в координатах р—N не имеет участка с асимптотическим приближением к горизонтальной прямой в этом случае возможно лишь нахождение ограниченных пределов выносливости на базе некоторого определенного числа циклов. Вредное влияние коррозии может быть ослаблено путем наклёпа, азотирования, оксидирования, хромирования и некоторых других способов обработки поверхности детали. Влияние коррозии при расчете деталей может быть учтено путем соответствующего увелнчентьч коэффициента концентрации напряжений.  [c.557]


Смотреть страницы где упоминается термин Предел выносливости (усталости) ограниченный : [c.241]    [c.80]    [c.332]    [c.109]    [c.163]    [c.332]    [c.380]    [c.274]    [c.104]    [c.188]    [c.175]   
Методика усталостных испытаний (1978) -- [ c.0 ]



ПОИСК



Выносливости предел

Выносливость

Выносливость ограниченная

Ограничения

Предел выносливости (усталости)

Предел выносливости ограниченной выносливости

Предел усталости

Усталость

Усталость выносливость



© 2025 Mash-xxl.info Реклама на сайте