Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронно-колебательные возмущения состояния (уровни)

Колебательно-вращательные взаимодействия в пределах каждого электронного состояния, обусловленные центробежным искажением и кориолисовым взаимодействием, смешивают вра-щ,ательные уровни одинакового типа симметрии Frv Эти взаимодействия удовлетворяют правилам отбора Дуз — четное и АКа = 0 или Av3 — нечетное и А/(а== 1 (симметрия не накладывает ограничений на значения Awi, Дг 2 и АКс). Чисто колебательные возмущения, обусловленные ангармоническими членами в потенциальной функции, в каждом электронном состоянии смешивают уровни одинакового типа Fv. Поэтому для таких возмущений Avi — четное. Так как все рассматриваемые состояния относятся к различным типам электронной симметрии, между ними отсутствуют чисто электронные взаимодействия. Однако конфигурационное взаимодействие может смешивать каждое электронное состояние с более высоковозбужденными электронными состояниями.  [c.341]


Качественные соображения. Может случиться, что два колебательных уровня многоатомной молекулы, принадлежащие к различным колебаниям (или комбинациям колебаний), имеют одинаковую или почти одинаковую энергию, т. е. может иметься случайное вырождение. На примере молекулы СО Ферми [322] впервые показал, что такой резонанс приводит к возмущениям уровней энергии, весьма аналогичным колебательным возмущениям в спектрах двухатомных молекул (см. Молекулярные спектры I, гл. V, 4). Единственное существенное различие состоит в том, что в двухатомных молекулах могут обладать близкой энергией и поэтому возмущать друг друга только колебательные уровни разных электронных состояний, тогда как в данном случае это может иметь место и для двух колебательных уровней одного и того же электронного состояния. Так, например, для молекулы СО. уровень г/ = О, v=l — 2, 1/з = 0 имеет почти одинаковую энергию с уровнем г , = 1, = г/д=0 = 1337 и У2 = 667 см (см. табл. 41)]. В двухатомных молекулах причиной возмущения уровней является взаимодействие колебательного и электронного движения. В случае многоатомных молекул такой причиной является ангармоничность потенциальной энергии и, таким образом, взаимодействия различных колебаний достаточно, чтобы вызвать возмущение, если два уровня случайно оказываются весьма близкими.  [c.234]

Дополнительные взаимодействия между электронными состояниями могут возникать во вращающейся молекуле в результате кориолисова взаимодействия, а в колеблющейся — в результате электронно-колебательного взаимодействия. Эти возмущения, проявляющиеся только в высоких вращательных или колебательных уровнях обоих электронных состояний, рассматриваются ниже в разд. 2 и 3.  [c.27]

Причину возникновения колебательных возмущений между электронными состояниями различных типов можно пояснить еще и следующим образом когда ядра смещены относительно положения равновесия, молекула имеет более низкую симметрию, чем в положении равновесия электронные состояния, относящиеся в положении равновесия к различным типам, могут иметь одинаковую симметрию в точечной группе более низкой симметрии, к которой принадлежат смещенные положения, и, следовательно, могут возмущать друг друга. Поэтому получается взаимное искажение потенциальных функций двух электронных состояний, но в данном случае в отличие от взаимодействия двух электронных состояний одного и того же тина искажение появляется только как функция определенных нормальных координат. Его можно рассматривать как следствие таких искажений потенциальных функций, при которых смещаются (возмущаются) определенные электронно-колебательные уровни двух электронных состояний. Нелегко  [c.69]


Вряд ли стоит подчеркивать, что в молекулах типа симметричного волчка могут существовать локальные возмущения в узких областях значений/, точно такие же, как в линейных молекулах, и обусловленные теми же самыми причинами, т. е. взаимодействиями Ферми и Кориолиса между различными колебательными уровнями данных электронных состояний или между различными электронно-колебательными уровнями различных электронных состояний.  [c.100]

В третьем случае (взаимное возмущение состояний В2 ж А 2) все остается таким же, как во втором случае Bi — Ао), показанном на фиг. ИЗ, б. Только теперь электронно-колебательно-вращательные свойства симметрии уровней в состоянии i 2 противоположны по сравнению с состоянием Bi (т. е. следует заменить В на 5i, Bi на В ,ж А жа. Ai, Ai на А2).  [c.266]

Влияние электромагнитного поля лазерного излучения на энергии атом ных уровней рассматривалось в гл. IV в рамках теории возмущений. При этом штарковские сдвиги уровней являются квадратичными по напряженности поля. Коэффициент пропорциональности, представляющий собой динамическую поляризуемость, зависит от частоты лазерного излучения. При частоте, малой по сравнению с частотами характерных атомных переходов, динамическая поляризуемость переходит в статическую поляризу емость. При увеличении частоты поля имеет место резонансное увеличение динамической поляризуемости, когда эта частота совпадает с частотой какого-либо перехода в дискретном спектре атома. При частоте поля, превышающей потенциал ионизации атома, штарковские сдвиги перестают зависеть от квантовых чисел исходного состояния и становятся равными средней колебательной энергии свободного электрона в поле электромагнитной волны.  [c.253]

Взаимодействие электронных состояний различных типов. В отличие от двухатомных молекул в многоатомных молекулах перемешивание (взаимодействие) электронных состояний различных типов может быть вызвано взаимодействием колебательного и электронного движений. Так происходит потому, что теперь для взаимодействия двух состояний друг с другом одинаковыми должны быть типы электронно-колебательных волновых функций. Это возможно при наличии двух подходящих колебательных уровней в двух электронных состояниях различных тинов. В таких случаях можно ожидать сдвиги колебательных уровней каждого из двух электронных состояний от их нормального положения в смысле взаимного отталкивания возникают электронно-колебательные возмущения. И обратно, величина этих возмущений зависит от расстояния между невозмущенными уровнями. В то же время каждое из взаимно возмущающихся электронно-колебательных состояний приобретает свойства другого электронного состояния, и это приводит к появлению запрещенных переходов (гл. II).  [c.69]

Правила отбора для электронно-колебательных возмущений, В многоатомных молекулах точно так же, как и в двухатомных, электронно-колебательные возмущения наиболее велики, когда две потенциальные поверхности двух электронных состояний пересекают друг друга (или проходят очень близко друг к другу). Перекрывание собственных функций наиболее благоприятно для уровней, расположенных вблизи области пересечения, поэтому и возмущение этих уровней должно быть большим при взаимодействии электронных состояний как одинаковых, так и различных тинов. Пересечение потенциальных поверхностей состояний одного и того же типа в двухатомных молекулах, вообще говоря, запрещено (правило непересечения см. [221, стр. 295 русский перевод, стр. 217), а в многоатомных молекулах, как впервые показано Теллером [11971, оно при определенных условиях может встречаться (см. также гл. IV). Поэтому возмущения между колебательными уровнями, принадлежащими к электронному состоянию одного и того же тина, во многом похожи па возмущения между состояниями различных типов, за исключением того, что в первом случае могут взаимно возмущаться даже нолносимметричные колебательные уровни.  [c.70]


Итак, мы показали, что энергетические уровни молекул можно классифицировать по типам точной симметрии, базисной симметрии и приближенной симметрии, а также по точным и приближенным квантовым числам. Наиболее полезными символами для классификации уровней являются Г (или четность), F, Frve, /, /, S, N, колебательные квантовые числа Vt и вращательные квантовые числа К, ( /) для симметричного волчка, Ка, Кс ДЛЯ асимметричного волчка и R для сферического волчка. Для определенных целей можно использовать также базисные типы симметрии Гг, Fv, Ге, Frv и Fve группы МС. Эти типы симметрии могут быть использованы для выявления смешивания уровней различными возмущениями и при определении правил отбора для электрических дипольных переходов. Среди наиболее важных правил отбора для возмущений особое место занимают правила, согласно которым ангармонические возмущения связывают уровни одинакового типа Fv, центробежное искажение и кориолисово взаимодействие связывают уровни одинакового типа Frv, а вибронное взаимодействие связывает состояния одинакового типа симметрии Fve. Получены также правила отбора по колебательным и вращательным квантовым числам. Выведены правила отбора для электрических дипольных переходов по колебательным, вращательным и электронным квантовым числам и по типам симметрии переходы, не подчиняющиеся этим правилам отбора, называются запрещен  [c.362]

Две функции нри К = О относятся соответственно к тинам S+ и 2 и сохраняют эти типы независимо от меры электронно-колебательного взаимодействия. Моягао показать, что даже в более высоком приближении функции зависят только от потенциальной функции F+ (или только от V ) и совершенно не зависят от F" (или от F+) и соответственно что гро зависит только от V (или только от F+). По аналогии хочется предположить, что при К = i первая пара функций г]) " и t i i принадлежит к F+, а вторая пара и xIjIj — к F" (или наоборот). Но, так как каждая пара вместе представляет целиком электронно-колебательное состояние П (К — 1), она не может быть симметричной или антисимметричной по отношению к операции отражения в нлоскости, проходящей через межъядерную ось, т. е. к одновременному изменению знаков нри v и ф, II потому не принадлежит полностью ни той, ни другой потенциальной функции. Существуют ненулевые матричные элементы возмущения (1,35) между (нри данном v ) н i Ji (при другом V2), т. е. каждый электронно-колебательный уровень П зависит н от F и от F . Такие же выводы получаются в отношении электронно-колебательных уровней Д, Ф,. ... Тем не менее в очень грубом первом приближении часто можно отнести функции к одной потенциальной кривой (скажем, F+), ai j - к другой (скажем, к F ).  [c.36]

Обычно электронные матричные элементы операторов Са малы по сравнению с колебательными матричными элементами Рг, поэтому оператор fv является основной причиной нарушения приближения Борна —Оппенгеймера. Однако для случая нелинейных молекул типа NH2, переходящих при колебании через линейную конфигурацию, возмущение fev может быть очень важным. В этом случае он описывает взаимодействие между колебательными уровнями двух электронных состояний, которые в линейной конфигурации ядер становятся вырожденными. Важность этого взаимодействия в таких случаях связана с тем, что взаимодействующие электронные состояния могут иметь заметный электронный угловой момент относительно оси симметрии (2) линейной конфигурации молекулы, а энергии взаимодействующих колебательных уровней могут быть очень близкими (вследствие электронного вырождения в линейной конфигурации молекулы). Такое возмущение получило название эффекта Ренера [99, 67].  [c.328]

В частном случае высокочастотного ш > п,п 1) и слабого <С 1 ) поля в спектре квазиэнергетических гармоник заселяется лишь одно состояние к = 0), так что возмущение сводится только к изменению (сдвигу) атомного уровня. Это изменение пропорционально квадрату напряженности поля и численно равно колебательной энергии свободного электрона в поле электромагнитной волны  [c.108]

Возмущения. Взаимодействие вращения и колебания, обусловливающее отмеченные выше систематические изменения уровней энергии, может также вызвать менее регулярные изменения — возмущения, подобные возмущениям, обнаруживаемым в двухатомных молекулах, в которых они, однако, могут возникнуть только вследствие взаимодействия вращения и движения электронов. Совершенно так же, как и в случае двухатомных молекул, эти возмущения всегда обусловлены взаимодействием двух близких по энереип состояний, обладающих одинаковыми значениями J, одинаковой четностью (- -, —) и одинаковой симметрией по отношению к перестановке одинаковых ядер (см. Молекулярные спектры I, гл. V, 4 и Крониг [542]). Однако, в то время как в двухатомных молекулах эти два состояния относятся всегда к двум различным электронным состояниям, в данном случае они могут принадлежать к одному и тому же электронному состоянию (основному состоянию), но к различным колебательным состояниям. Мы можем подразделить возмущения по их внешнему виду на колебательные и вращательные (совершенно так же, как и для двухатомных молекул) и по их природе на возмущения Ферми и возмущения Кориолиса (или на гомогенные и гетерогенные возмущения Мелликен [642]).  [c.407]

Примером несколько другого рода может служить переход Д — 2 + для молекулы точечной группы Соов- Если этот запрещенный электронный переход происходит с перпендикулярной компонентой дипольного момента (М у), то все остается по-прежнему, т. е. возможными будут переходы с Д Уг = 1, 3,. .., где Уг — квантовое число деформационного колебания. По-прежнему в спектре будут проявляться главным образом переходы с Д Уг = 11 если не очень велико взаимодействие типа Реннера — Теллера. Однако если переход происходит с параллельной компонентой дипольного момента (Мг, АК = 0), то возможны только переходы с Аи = 2, 4,. .., так как лишь в этом случае значения К в верхнем и нижнем состояниях могут быть одинаковыми (фиг. 2). Следовательно, для первой интенсивной полосы значение v будет равно 2, т. е. от строго запрещенной полосы 0 — 0 она будет удалена на расстояние, равное 2ш . Горячие полосы могут наблюдаться и с Лиг = 0 например, полоса 1 — 1 тина П — П доляша располагаться вблизи запрещенной полосы О — 0. Первой полосой в спектре флуоресценции, связанной с самым низким колебательным уровнем верхнего состояния (электронноколебательный тип симметрии Д ), будет полоса О — 2 типа А — Д, расположенная с длинноволновой стороны от полосы 0 — 0 на расстоянии 2сйг. Следует, однако, иметь в внду, что переход А — 2 с компонентой дипольного момента может происходить только в том случае, если состояние Д возмущено состоянием 2 (или наоборот). Такое возмущение обязательно должно быть слабым, так как симметрия состояний Д и 2 различается больше, чем на тип симметрии одного нормального колебания (гл. I, разд. 2, г и гл. II, разд. 1, б,у). И действительно, подобных примеров пока не обнаружено.  [c.180]


Калломоном [173а] было отмечено, что дальнейшее увеличение времени столкновения вызывается процессом внутренней конверсии , представление о котором введено многими авторами для объяснения процессов переноса энергии в больших молекулах. Здесь внутренняя конверсия заключалась бы в безызлучательном переходе молекулы из состояния, образованного обращением предиссоциации, на высокие колебательные уровни нижнего электронного состояния, возможно, основного состояния. Механизм этой конверсии до сих нор хорошо не понят, но предположительно он связан с интенсивными возмущениями между двумя рассматриваемыми состояниями. Таким образом, в настоящем случае процесс перекрывания должен полностью соответствовать, если не быть идентичным, обращению случайной предиссоциации (см. [22], стр. 415, русский перевод стр. 298).  [c.488]


Смотреть страницы где упоминается термин Электронно-колебательные возмущения состояния (уровни) : [c.46]    [c.751]    [c.74]    [c.204]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.0 ]



ПОИСК



Возмущение

Возмущения колебательные

Возмущения электронно-колебательные

Г-состояния, F-состояния электронные

Колебательные

Колебательный Уровень

Состояние и уровень

Состояние электронов

Состояния колебательные

Уровни электронно-колебательные

Электронные состояния

Электроны уровням



© 2025 Mash-xxl.info Реклама на сайте