Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отрицательные вращательные уровни

Отношение интенсивности стоксовых и антистоксовых комбинационных линий 271 Отношение произведений частот изотопических молекул, независимость от силовых постоянных 248, 251 Отражение в плоскости 12, 78 Отражение в центре 12, 27, 37, 111, 121 Отрицательные вращательные уровни асимметричных волчков 63, 495, 438 линейных молекул 27, 31, 400, 409, 427 симметричных волчков 38, 41—43, 434, 444  [c.618]

Свойства симметрии и статистические веса. Как и в случае двухатомных и линейных многоатомных молекул, вращательные уровни симметричного волчка являются либо положительными , либо отрицательными ", в зависимости от того, меняет ли свой знак полная собственная функция при отражении всех частиц в начале координат или не меняет. Однако в данном случае  [c.38]


Рассмотрим сначала молекулы только с одной парой одинаковых ядер, как, например, молекулы Н О, Н СО, Ск СО и подобные им молекулы, принадлежащие к точечной группе iv Вращательные уровни таких молекул, находящихся в полностью симметричном колебательном и электронном состоянии (основном состоянии), являются симметричными относительно ядер, если они положительны по отношению к повороту вокруг оси второго порядка на 180°, и антисимметричными, если они отрицательны по отношению к тому жз повороту. В рассматриваемых молекулах ось симметрии второго порядка совпадает либо с осью а, либо с осью Ь (которым соответствует наименьший или средний момент инерции). В первом случае уровни, положительные по отношению к операции симметрии С , являются симметричными,  [c.66]

Свойства симметрии вращательных уровней. Для молекулы, случайно являющейся симметричным волчком, вращательные уровни обладают лишь одним свойством симметрии они являются положительными или отрицательными , в соответствии с тем, остается ли полная собственная функция неизменной или меняет знак при отражении в начале координат. Если молекула является неплоской, то каждый из рассмотренных выше уровней  [c.434]

Если инверсионным удвоением нельзя пренебречь, тогда требуется специальное рассмотрение свойств симметрии. Мы опять разберем только случай молекулы типа XYg, принадлежащей к точечной группе Св. (подобной, например, молекуле NHg). Ранее (стр. 240) было показано, что колебательная собственная функция более низкой составляющей инверсионного дублета остается неизменной, тогда как собственная функция более высокой составляющей меняет при инверсии знак. Комбинируя это свойство с положительной и отрицательной (-)-, —) симметрией вращательных уровней сплющенного симметричного волчка (фиг. 8,6), мы получаем четность вращательных уровней для полносимметричного вырожденного колебательного уровня, как показано слева для каждого уровня на фиг. 120. Теперь необходимо учесть, что каждая колебательная собственная функция является суммой или разностью собственных функций левой и правой форм, и поэтому колебательные уровни можно классифицировать в соответствии с типами симметрии точечной группы D3 (потенциальное поле имеет симметрию точечной группы Ддд). Легко заметить, что положительные колебательные подуровни невырожденного колебательного состояния принадлежат к колебательному типу симметрии Ац отрицательные — к типу симметрии А . Комбинируя эти типы симметрии с типами симметрии вращательных уровней для полносимметричного колебательного уровня (фиг. 118,а), мы получим полную симметрию (без учета ядерного спина), указанную на фиг. 120,а справа от каждого уровня. Таким же образом получается полная симметрия для вырожденного колебательного уровня на фиг. 120,6. При равенстве нулю спина одинаковых ядер будут иметься только вращательные уровни Aj. В случае полносимметричного колебательного уровня отсюда следует, как и ранее, что встречаются только уровни с О, 3, 6,. ..  [c.441]


Кроме рассмотренных свойств симметрии, мы, как и ранее, имеем свойства симметрии по отношению к инверсии ( положительные и отрицательные уровни). Для неплоской молекулы каждый вращательный уровень является двойным (инверсионное удвоение), причем одна из компонент положительна, а другая — отрицательна. Для плоской молекулы подобного удвоения не существует, и каждый вращательный уровень является либо положительным , либо отрицательным . Так как для плоской молекулы вращение на 180° вокруг оси наибольшего момента инерции в сочетании с отражением в плоскости молекулы эквивалентно инверсии, то для полносимметричных колебательных состояний вращательные уровни и -]----(см. стр. 65) являются поло-  [c.495]

Совершенно очевидно, что и в комбинационном спектре между собой комбинируют только те вращательные уровни, которые относятся к одинаковым полным типам симметрии. Правила отбора, связанные с симметрией по отношению к инверсии (с делением уровней на положительные и отрицательные), совпадают с правилами отбора для комбинационных спектров линейных молекул и молекул, являющихся симметричным волчком, т. е.  [c.521]

Свойства симметрии вращательных уровней такие же, какие были рассмотрены в томе П 123] при описании инфракрасных и комбинационных спектров рассеяния. Вращательные уровни являются положительными ( ) или отрицательными (—) в зависимости от того, сохраняет волновая функция знак нри инверсии или меняет его на противоположный. В симметричных линейных молекулах, кроме того, различаются симметричные в) и антисимметричные (а) вращательные уровни в соответствии с тем, сохраняет или меняет знак волновая функция, когда меняются местами ядра, распо-лон<енные по разные стороны от центра.  [c.73]

ВОЗМОЖНОСТИ инверсии. Эти два подуровня разделены измеримым интервалом только в тех случаях, когда мал барьер между равновесными ноложениями. За исключением этого довольно редкого случая, классификация (+ или —) для неплоских молекул несущественна. В плоских молекулах инверсионное удвоение не появляется вращательный уровень либо полон ителен , либо отрицателен . В полносимметричном электронно-колебательном состоянии вращательные уровни - —[- и т-- положительные ,--и — — отрицательные (см. [23], стр. 495). Свойства (+ или —) обозначены слева на фиг. 41 и 42 для электронно-колебательных уровней Лд, А1 и А. Такие же  [c.114]

Так как ядерные спиновые волновые функции имеют положительную четность и полная внутренняя волновая функция может иметь положительную или отрицательную четность без ограничения, можно определить статистические веса энергетических уровней любой молекулы, пользуясь перестановочной подгруппой группы МС. Эта подгруппа получается из группы МС путем исключения всех перестановочно-инверсионных элементов. Фактически это обычный способ определения ядерно-спиновых статистических весов [122], хотя эта группа называется вращательной подгруппой молекулярной точечной группы (она будет рассмотрена в следующей главе). Поскольку при изучении молекулы определяется симметрия ровибронных уровней в группе МС, целесообразно использовать эту же симметрию для определения статистических весов, вместо того чтобы пользоваться перестановочной подгруппой группы МС.  [c.257]

Для молекул, обладающих симметрией Ооо/,, дополнительное правило отбора, запрещающее переход между симметричными и антисимметричными уровнями и отличающееся от правила отбора в инфракрасном спектре, не противоречит правилу отбора (1,16) для переходов между положительными и отрицательными уровнями. Поэтому молекулы этого типа также имеют вращательные комбинационные спектры.  [c.33]

Ока [85]. В этой работе показано, что два возможных типа симметрии полной внутренней функции Ф соответствуют положительной или отрицательной четности и обосновано использование четности для классификации вращательных уровней (т. е. для ровибронного состояния rve. Однако, как указывалось выше, вращательные уровни лучше классифицировать, используя типы симметрии Frve групп МС, поскольку такая классификация содержит больше информации, чем четность обозначений, при рассмотрении межмоле-куляриых и внутримолекулярных взаимодействий и взаимодействий молекулы с электромагнитным излучением [за исключением молекул с симметрией s(M), для которых тип симметрии Frve н четность эквивалентны]. См. стр. 89 и 90 в работе [20].  [c.293]


Если линейная молекула принадлежит к точечной группе Dooh, т- е. имеет центр симметрии (как, например, молекула С Н ), то, помимо свойств симметрии по отношению к инверсии, появляются свойства симметрии по отношению к перестановке одинаковых ядер—собственная функция может быть симметричной или антисимметричной. Полная собственная функция < системы (без учета собственной функции спина ядра) остается неизменно или меняет свой знак при одновременной перестановке всех ядер, расположенных по одну сторону от центра, с ядрами, расположенными по другую сторону. Мы называем соответствующие вращательные уровни симметричными или антисимметричными. Ниже будет показано, что точно так же, как и в случае двухатомных молекул, имеющих одинаковые атомы, либо положительные вращательные уровни являются симметричными, а отрицательные—-антисимметричными, либо отрицательные уровни являются симметричными, а положительные—-антисимметричными. Первая возможность осуществляется для симметричных электронных состояний (состояний при отсутствии колебаний для этого случая на фиг. 4 указана симметрия буквами в скобках.  [c.27]

Свойства симметрии вращательных уровней. Как мы уже видели в гл. I, раздел 1, вращательные уровни линейных молекул являются положительными или отрицательными в зависимости от того, остается ли при мнверснгг полная собственная функция неизменной или меняет свой знак для наинизшего колебательного уровня (как в гл. I) и для всех полносимметричных возбужденных колебательных уровней (принадлежащих к типу симметрии И ) электронного основного состояния. Четные вращательные уровни являются положительными, нечетные — отрицательными (см. фиг. 4). Это справедливо, если предполагать, что электронное основное состояние является также полносимметричным. Для колебательных уровней (совершенно так же, как и для электронных состояний двухатомных молекул) четные колебательные уровни являются отрицательными, нечетные—-положительными. Для колебательных уровней Б, Д,... (как и для электронных состояний П, Д,... двухатомных молекул) каждому значению соответствует положительный и отрицательный уровни, очень мало различающиеся величиной энергии (см. ниже), порядок которых чередуется  [c.400]

В случае линейных молекул с центром симметрии (принадлежащих к точечной группе >00 л, как, например, молекулы СО и С Н ) положительные вращательные уровни являются симметричными, отрицательные — антисимметричными по отношению к одновременной перестановке всех пар одинаковых ядер. Это имеет место для всех колебательных уровней, являющихся симметричными по отношению к инверсии (типы симметрии И, П , g,...) обратное соотношение имеет место для всех колебательных уровней, антисимметричных по отнопюнию к инверсии (типы симметрии П , Д ,. ..). На фиг. 99, б" показано несколько примеров. Все эти соотношения аналогичны соотношениям для различных электронных состояний двухатомных молекул их доказательство совершенно аналогично приведенному в книге Молекулярные спектры I, гл. V, 2, если рассматриваемые там электронные собственные функции заменить колебательными собственными функциями.. Для двухатомных молекул колебательные собственные функции всегда полносимметричны в данном случае предполагается, что электронная собственная функция является полносимметричной. Последнее утверждение практически всегда справедливо для электронного основного состояния, но не всегда справедливо для возбужденных электронных состояний, для которых поэтому нужно применять другие правила.  [c.400]

На фиг. 26 показаны врашдтельные уровни для колебательных уровней 2 , 2 и П синглетного эд[ектронного состояния с учетом их свойств симметрии. Для колебательных уровней Н, а также А, Ф,. . . при каждом значении J существует один положительный и один отрицательный вращательный уровень вследствие -удвоения они расщеплены таким образом,  [c.73]

Для вращательных состояний молекулы типа жесткого симметричного волчка число К является точным квантовым числом, однако для колебательно-вращательных или ровибронных состояний оно является приближенным квантовым числом. Это квантовое число теряет смысл за счет эффектов центробежного искажения и кориолисова взаимодействия. Так как гамильтониан молекулы коммутирует с операцией обращения времени (которая переводит любую волновую функцию в ее комплексносопряженную см. гл. 6), каждая собственная функция всегда содержит суммы или разность собственных функций с k = К н k == —К. Поэтому энергетические уровни могут быть классифицированы по значениям положительного квантового числа К, а не квантового числа k, получающего положительные и отрицательные значения. Квантовое число J является приближенным для полных внутренних состояний Е и теряет смысл, например, при учете взаимодействия Япзг, зависящего от ядерного спина. Однако число F является точным квантовым числом для изолированной молекулы в свободном пространстве.  [c.309]

Ранее было показано, что скорость установления равновесия между двумя системами меняется как ехр (—АЕ1кТ), где АЕ — отрицательное изменение энергии, кТ — локальная термодинамическая температура. Для вращательных степеней свободы АЕ составляет около 0,001 эв, а для колебательных степеней свободы АЕ равно около 0,1 эв. Значения АЕ для процессов ионизации и диссоциации зависят от участвующих компонент и изменяются в довольно широких пределах однако непосредственно для наших целей можно принять, что для диссоциации АЕ равно около 5 эв, а для ионизации АЕ равно 10 эв. Важнейшие электронные уровни возбуждаются при нескольких электрон-вольтах.  [c.494]


В согласии с предыдущим классическим рассмотрением взаимодействия вращения и колебания колебательный момент количества движения возникает вследствие кориолисова взаимодействия двух нормальных колебаний. Полный колебательный момент количества движения слагается из частей, соответствующих каждой паре взаимодей-ствуюпшх колебаний, как видно из уравнения (4,11). Как обычно, учет такого возмуи ения в волновом уравнении приводит к взаимному отталкиванию двух первоначальных колебательных уровней, которое при увеличении вращательного квантового числа J возрастает в рассматриваемом случае по квадратичному закону. Иными словами, более высокий из двух колебательных уровней имеет большее значение постоянной В, более низкий — меньшее значение по сравнению со значениями, которые они имели бы при отсутствии этого взаимодействия, т. е. к постоянным а,-, соответствующим более высокому из двух взаимодействующих уровней, добавляется отрицательный член, а к постоянным j, соответствующим более низкому уровню, — положительный член. Величина этой добавки обратно пропорциональна разности частот двух колебаний, так как колебательный момент количества движения тем больше, чем более различаются между собой два взаимодействуюи1,их колебания (см. выше).  [c.404]


Смотреть страницы где упоминается термин Отрицательные вращательные уровни : [c.620]    [c.50]    [c.27]    [c.28]    [c.39]    [c.64]    [c.435]    [c.743]    [c.480]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



Вращательные уровни

Отрицательные

Отрицательные (симметрия) вращательные уровни

Отрицательные вращательные уровни асимметричных волчков

Отрицательные вращательные уровни линейных молекул

Отрицательные вращательные уровни симметричных волчков



© 2025 Mash-xxl.info Реклама на сайте