Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращательные спектры, инфракрасные симметричных волчков

Исследование вращательных комбинационных и инфракрасных спектров аммиака (см. г.ч. I) показало, что молекула NH,, является симметричным волчком, обладающим постоянным электрическим дипольным моментом. Наиболее простое объяснение этого экспериментального факта состоит в предположении, что молекула аммиака образует пирамиду с атомом азота в вершине. Однако возможны и другие предположения. Хотя результаты исследования вращательного инфракрасного спектра совершенно исключают возможность плоской симметричной структуры (точечная группа D,/,, см. фиг. 1, S), так как такая структура не обладает дипольным моментом, но они не исключают несимметричную структуру, при которой молекула имеет два равных или почти равных момента инерции (например, плоскую несимметричную модель с симметрией или пирамидальную несимметричную модель с симметрией С ). Однако в этом случае молекула должна была бы иметь шесть основных частот, в то время как при предположении о симметричной пирамидальной структуре (точечная группа Сз,,) получаются только четыре частоты две полностью симметричные Ai и две дважды вырожденные Е (см. табл. 36). На основе последнего предположения может быть дано удовлетворительное истолкование большого числа полос в обычной и фотографической областях инфракрасного спектра, а также линий комбинационного спектра. Не имеется никаких данных о  [c.318]


Правила отбора. Можно показать, что правила отбора для инфракрасного вращательно-колебательного спектра симметричных волчков такие же, как для вращательного и колебательного спектров в отдельности, с той разницей, что для вращательных переходов теперь является существенным не направление собственного дипольного момента, а направление изменения дипольного момента (или, иначе говоря, направление переходного момента).  [c.443]

Правила отбора. Правила отбора для вращательного квантового числа при электронных переходах в молекулах типа симметричного волчка те же, что и для инфракрасных спектров, поскольку в соответствии с выражением (11,15) они определяются теми же самыми матричными элементами направляющих косинусов  [c.222]

Нри данном рассмотрении мы не будем учитывать влияние эффекта Яна — Теллера на вращательные энергетические уровни. Как было показано в гл. I, разд. 3,6, кориолисово взаимодействие первого порядка расщепляет каждый вращательный уровень состояния / о на три компоненты (/), (/) и Р - (/), энергия которых дается выражением (1,136). Как и в случае инфракрасного спектра (см. [23], стр. 481), для уровней Р Р - существует правило отбора, в какой-то мере аналогичное правилу отбора для уровней ( + 0, (—Ц молекул тина симметричного волчка. Теллер [1196] показал, что могут происходить только следующие переходы  [c.243]

Полоса НгО при 1240 А имеет довольно сложную структуру, которую удалось сравнительно легко проанализировать только благодаря тому, что вращательные уровни основного состояния были хороню известны в результате выполненного ранее исследования инфракрасного спектра. Напротив, полосы Нг8 имеют весьма простую структуру. Это связано с тем, что конфигурация молекулы НгЗ в обоих состояниях близка к симметричному волчку, т. е. состояния А и В значительно ближе но характеру, чем в случае НгО. Наблюдаемые в обеих молекулах явления предиссоциации обсуждались в гл. IV. Иа  [c.502]

Моменты инерции молекулы ЗОг/ь и /,с мало отличаются друг от друга, поэтому ее можно рассматривать как симметричный волчок. Молекула имеет постоянный дипольный момент 1,61 Д [16]. Электронный спектр поглощения ЗОг расположен в ультрафиолетовой области, чисто вращательный — в далекой инфракрасной.  [c.16]

Вращательные уровни энергии — это уровни, связанные с вращательным движением молекулы как целого. Вращение молекул приближенно рассматривают как свободное вращение твердого тела с тремя моментами инерции вокруг трех взаимно перпендикулярных осей. При этом возможны три случая 1) сферический волчок (все три момента инерции одинаковы) 2) симметричный волчок (два момента инерции одинаковы, третий отличен от них) 3) асимметричный волчок (все три момента инерции различны). Разности энергий соседних вращательных уровней составляют от сотых долей электрон-вольта для самых легких молекул до стотысячных долей электрон-вольта для наиболее тяжелых молекул. Вращательные переходы непосредственно изучаются методами инфракрасной спектроскопии и комбинационного рассеяния света, а также методами радиоспектроскопии. Колебательно-вращательные спектры получаются в ре-дультате того, что изменение колебательной энергии сопровождается одновременными изменениями вращательной энергии. Такие изменения происходят и при электронно-колебательных переходах, что и обусловливает вращательную структуру электронно-колебательных спектров.  [c.228]


Инфракрасный спектр. Как и в случае линейных молекул, инфракрасный вращательный спектр может появиться в дипольном излучении, лишь если молекула обладает собственным дипольным моментом. Когда, как о5ычно, ось симметричного волчка совпадает с осью симметрии, то собственный ди-польный момент обязательно ориентирован по этой оси. В этом случае получаются следующие правила отбора для чисел К и J (см. ниже)  [c.43]

Члены с коафициентом /Зуд- обусловливают очень малое расщепление каждой линии на составляющие, характеризующиеся различными К- Такую структуру, однако, еще не удалось разрешить. Усреднение членов с коэфициентами Ьуд- и Dj приводит к небольшому систематическому изменению расстояний между последовательными линиями, а такмсе к тому, что четные линии ветвей / уже не совпадают в точности с линиями 5. Последнее обстоятельство, хотя тоже не приводит к заметному расщеплению, но проявляется в том, что нечетные линии R не расположены точно посредине между соседними линиями S. Это видно нз табл. 6, которая также ясно показывает систематическое изменение расстояний между линиями. Учитывая поправочные члены, Льюис и Гаустон [576] получили из экспериментально наблюденных комбинационных частот, приведенных в табл. 6, для вращательной постоянной В значение 9,92 см", которое очень хорошо совпадает со значением 6=9,945 m S полученным из инфракрасного вращательного спектра (см. стр. 46). Такое количественное совпадение, а также качественная структура спектра (в частности, появлений лишь линий, для которых ДЛ =0) с несомненностью показывает, что молекула NHj является симметричным волчком, ось которого совпадает с осью симметрии (осью симметрии третьего порядка).  [c.49]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]

Правила отбора. Совершенно аналогично случаю линейных молекул и молекул, являющихся симметричным волчком, до тех нор, пока взаимодействие колебания и вращения не слин1ком велико, правила отбора для переходов между колебательными уровнями во вращательно-колебательном спектре и в чисто колебательном спектре совершенно одинаковы (табл. 55). В частности, основное состояние может комбинировать (в инфракрасном поглощении) только с колебательными состояниями типа Еа. Правило отбора для вращательного квантового числа J также обычное  [c.481]

Нужно иметь в виду, что фиг. 150 построена при предположении, что вращательные постоянные верхнего и нижнего состояний равны друг другу. Если оно не выполняется, то все три ветви будут оттенены в ту или иную сторону. Если вращательные постоянные верхнего и нижнего состояний очень сильно различаются, как это может иметь место для инфракрасных полос в фотографической области инфракрасного спектра, то будет отсутствовать сгущение линий около центра полосы (фиг. 150) и ее общий вид совершенно изменится. Примером этого может служить полоса Н2О в области 9400 А, воспроизведенная на фиг. 151,а. С другой стороны, полоса Н О в области 8200 А (фиг. 151,(5) ясно обнаруживает центральную ветвь . Эти две полосы принадлежат молекуле, которую нельзя считать симметричным волчком даже приближенно. На фиг. 152 и 153 приведены две полосы типа А молекул Н СО и С2Н4, которые близки к симметричному волчку (с р — 0,13 и 0,16 соответственно). Нетрудно видеть, что эти полосы практически тождественны параллельным полосам молекул, являющихся симметричными волчками.  [c.501]


Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]


Смотреть страницы где упоминается термин Вращательные спектры, инфракрасные симметричных волчков : [c.599]    [c.55]    [c.55]    [c.601]    [c.615]    [c.620]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.41 , c.43 , c.46 , c.48 , c.49 , c.445 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок симметричный

Вращательные симметричных волчков

Вращательные спектры, инфракрасные

Вращательный симметричного волчка

Инфракрасные спектры

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

По инфракрасная

Симметричные волчки (молекулы) инфракрасный вращательный спектр

Спектры вращательные

Уровни энергии. Свойства симметрии. Статистические веса, влияние спина и статистика. Термическое распределение вращательных уровней. Инфракрасные вращательные спектры. Вращательные комбинационные спектры Симметричный волчок



© 2025 Mash-xxl.info Реклама на сайте