Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Правила отбора в инфракрасном вращательном спектр

Для молекул, обладающих симметрией Ооо/,, дополнительное правило отбора, запрещающее переход между симметричными и антисимметричными уровнями и отличающееся от правила отбора в инфракрасном спектре, не противоречит правилу отбора (1,16) для переходов между положительными и отрицательными уровнями. Поэтому молекулы этого типа также имеют вращательные комбинационные спектры.  [c.33]

Правила отбора. Можно показать, что правила отбора для инфракрасного вращательно-колебательного спектра симметричных волчков такие же, как для вращательного и колебательного спектров в отдельности, с той разницей, что для вращательных переходов теперь является существенным не направление собственного дипольного момента, а направление изменения дипольного момента (или, иначе говоря, направление переходного момента).  [c.443]


Инфракрасный спектр. Как всегда, чисто вращательный спектр может возникнуть лишь в том случае, если молекула обладает собственным дипольным моментом. В молекулах, обладающих осью симметрии, собственный дипольный момент обязательно ориентирован по этой оси. Поэтому если молекула имеет две или несколько (несовпадающих друг с другом) осей симметрии, то ее собственный дипольный момент должен равняться нулю. Это справедливо для всех молекул, являющихся сферическими волчками вследствие своей симметрии, т. е. для молекул, относящихся к любой кубической точечной группе, например, для молекул СН,,, и др, Следовательно, такие молекулы не обладают вращательным инфракрасным спектром. Только в том случае, когда молекула случайно является сферическим волчком, сна может иметь собственный дипольный момент, отличный от нуля, и, следовательно, давать инфракрасный вращательный спектр. Тогда для квантового числа / справедливо простое правило отбора с О, 1, причем достаточно рассматривать аере-  [c.54]

Инфракрасный вращательный спектр. Инфракрасный вращательный спектр, как и в ранее рассмотренных случаях, может возникнуть только если молекула обладает собственным дипольным моментом. Поэтому молекулы с симметрией Кл (такие, как С Н , N20,4) не дают инфракрасного вращательного спектра подобный спектр имеют только молекулы с симметрией С. , такие как Н.2О, Н СО, Н Оа, или молекулы с еще более низкой симметрией. В случае наличия собственного дипольного момента мы имеем, как и всегда для дипольного излучения, правило отбора для числа У.  [c.69]

Правила отбора. Аналогично случаю двухатомных молекул, можно считать с хорошей степенью приближения, что правила отбора для чисто колебательного спектра и для чисто вращательного спектра остаются неизменными и при взаимодействии колебания и вращения (доказательство см. в разделе 26). Таким образом, также и для вращательно-колебательного спектра в инфракрасной области происходят только те колебательные переходы (см. табл. 55), для которых составляющая собственного момента относится к типу симметрии 1 или составляющие и Му относятся к типу симметрии П (где значок и для точечной группы Соо следует опустить), т. е. только те колебательные переходы, для которых  [c.408]


Нри данном рассмотрении мы не будем учитывать влияние эффекта Яна — Теллера на вращательные энергетические уровни. Как было показано в гл. I, разд. 3,6, кориолисово взаимодействие первого порядка расщепляет каждый вращательный уровень состояния / о на три компоненты (/), (/) и Р - (/), энергия которых дается выражением (1,136). Как и в случае инфракрасного спектра (см. [23], стр. 481), для уровней Р Р - существует правило отбора, в какой-то мере аналогичное правилу отбора для уровней ( + 0, (—Ц молекул тина симметричного волчка. Теллер [1196] показал, что могут происходить только следующие переходы  [c.243]

Правил отбора для разрешенных электрических дипольных переходов. Особенно важны правила отбора для переходов между вращательно-инверсионными состояниями. Из табл. А. 9 видно, что Мг и (Мх, Му) относятся к типам симметрии Л 2 и Е соответственно, а Г совпадает с Л". Следовательно, переходы в основных полосах типа активных в инфракрасном спектре, удовлетворяют правилам отбора А/С = 1 и Д/= О, 1, а переходы вращательно-инверсионного спектра подчиняются правилам отбора АК =0, AUi — нечетное и Л/ = О, 1. Так как состояние с Ui = 1 очень близко к состоянию с Ui = О, горячие переходы из состояния с Ui = 1 так же важны, как и переходы из основного состояния с 01 = 0. На рис. 12.10 показаны низкие вращательные уровни состояний с Ui = О, 1, 2, 3 и некоторые разрешенные в электрическом дипольном поглощении вращательно-инверсионные переходы, показанные сплошными линиями. Полосы переходов с Ui=3- 0 и 21 в инфра-. красном спектре, соответствующие полосе с U2 == 1 - О жесткой неплоской молекулы, полностью перекрываются. В микроволновом спектре поглощения активны переходы типа Ui = 0-<-l и 1- -0 три перехода такого типа указаны на рис. 12.10 эти переходы соответствуют чисто вращательным переходам в жесткой неплоской молекуле. Вращательные переходы в состояниях с ui = О или 1 запрещены, однако колебательно-вращательные  [c.393]

В случае молекул с низким барьером торсионная структура колебательных состояний выглядит как дополнительная вращательная структура. Поэтому для интерпретации вращательно-торсионной структуры колебательных переходов требуется знание правил отбора по квантовым числам Ка, Кс и Ki. В инфракрасном спектре разрешены переходы, удовлетворяющие условию симметрии  [c.400]

Для подробного вывода правил отбора воспользуемся представлением нормальных координат (12.87) и типами симметрии вращательных и торсионных функций из табл. 12.5 и 12.6. Пять основных полос колебаний типа Ж активны в инфракрасном спектре, если сопутствующие им вращательно-торсионные переходы удовлетворяют условию  [c.400]

Правила отбора. Правила отбора для вращательного квантового числа при электронных переходах в молекулах типа симметричного волчка те же, что и для инфракрасных спектров, поскольку в соответствии с выражением (11,15) они определяются теми же самыми матричными элементами направляющих косинусов  [c.222]

Так же как для инфракрасного спектра, между собой комбинируют только те вращательные уровни, которые обладают одинаковой симметрией (см. стр. 444). Это правило не приводит, однако, к каким-либо дополнительным ограничениям возможных значений АК, так как оно неявно содержится в вышеприведенных правилах отбора для АК. Однако оно ограничивает возможные комбинации подуровней с заданными значениями К к J  [c.470]

Правила отбора. Если, как обычно, взаимодействие колебания и вращения не слишком велико, то правила отбора для инфракрасного вращательноколебательного спектра опять такие же, как для вращательного и колебательного спектров, рассматриваемых отдельно, за исключением того, что для вращательных правил отбора нужно теперь учитывать направление изменения дипольного момента в процессе колебания (см. табл. 55). Таким образом мы, как всегда, имеем  [c.497]

Инфракрасный спектр. Как и в случае линейных молекул, инфракрасный вращательный спектр может появиться в дипольном излучении, лишь если молекула обладает собственным дипольным моментом. Когда, как о5ычно, ось симметричного волчка совпадает с осью симметрии, то собственный ди-польный момент обязательно ориентирован по этой оси. В этом случае получаются следующие правила отбора для чисел К и J (см. ниже)  [c.43]


V, молекулы точечной группы V полная симметрия вращательных уровней 491, 493 правила отбора в колебательных спектрах 274 правила отбора для вращательных спектров 469, 498, 199 типы инфракрасных полос 499 числа колебаний каждого типа симметрии 153 ( >а), точечная группа 17, 23, 538 отношение к типам симметрии групп У,1, С 255 типы симметрии и характеры 120, 129, 141 У , высота потенциального барьера для внутреннего вращенпя крутильных колебаний (см. также Потенциальный барьер) 241, 526, 527 У/1, молекулы точечной группы правила отбора 274  [c.639]

Формальдегид, Н СО и О СО. Обычно предполагается, что молекула формальдегида имеет плоскую симметричную форму типа У (точечная группа С , см. фиг. 24), хотя априори (если не учитывать теорию направленных валентностей) возможна и форма пирамиды только с одной плоскостью симметрии (точечная группа С ). Однако последнее предположение безусловно иск.тючается, так как во вращательной структуре инфракрасных и ультрафиолетовых полос наблюдается чередование интенсивностей (3 1) см. стр. 509 и [288]). Было бы трудно прийти к такому выводу на основе только одного колебательного спектра, так как для обеих моделей все шесть основных частот (см. фиг. 24) активны как в инфракрасном, так и в комбинационном спектрах (см. табл. 55). Хотя для обеих моделей должны получаться некоторые различия в правилах отбора для составных частот инфракрасного спектра и в поляризации основных комбинационных частот, но имеющиеся экспериментальные данные ) не позволяют прийти к сколько-нибудь надежному выводу. Из имеющихся данных о колебательном спектре существенное подтверждение плоской модели дает лишь применение правила произведений к наблюденным значениям основных частот молекул НзСО и В СО. Соответствуюп1ее соотношение хорошо выполняется лишь для плоской модели. В дaльнeйпJeм мы будем исходить именно из этой модели.  [c.324]

Правила отбора. Для вращательно-колебательного комбинационного спектра (так же как и для инфракрасного спектра) с очень хорошей степенью прибл 1жения справедливы те же колебательные и вращательные правила отбора, что и для чисто колебательного (см. табл. 55) и чисто вращательного спектров соответственно. В наиболее общем случае, т. е. в том случае, когда ось волчка не совпадает с осью симметрии,  [c.469]

Правила отбора. Совершенно аналогично случаю линейных молекул и молекул, являющихся симметричным волчком, до тех нор, пока взаимодействие колебания и вращения не слин1ком велико, правила отбора для переходов между колебательными уровнями во вращательно-колебательном спектре и в чисто колебательном спектре совершенно одинаковы (табл. 55). В частности, основное состояние может комбинировать (в инфракрасном поглощении) только с колебательными состояниями типа Еа. Правило отбора для вращательного квантового числа J также обычное  [c.481]


Смотреть страницы где упоминается термин Правила отбора в инфракрасном вращательном спектр : [c.620]    [c.55]    [c.273]    [c.291]    [c.409]    [c.607]    [c.244]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.32 , c.41 , c.43 , c.69 ]



ПОИСК



Вращательные правила отбора

Вращательные спектры, инфракрасные

Инфракрасные спектры

Отбор

По инфракрасная

Правила отбора

Правила отбора для инфракрасных

Спектры вращательные



© 2025 Mash-xxl.info Реклама на сайте