Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двигатели воздушные реактивны

Двигатель воздушно-реактивный 113  [c.254]

Циклы воздушно-реактивных двигателей. Воздушно-реактивные двигатели в зависимости от способа сжатия воздуха, поступающего из атмосферы в камеру сгорания, разделяют на бескомпрессорные (со сжатием воздуха только вследствие скоростного напора воздушного потока) и компрессорные.  [c.568]

Двигатель воздушно-реактивный 61, 62 63, 256  [c.421]


Из двух указанных мною классов реактивных двигателей, двигатели воздушно-реактивные получили широкое применение в авиации, вытеснив в скоростной авиации двигатели поршневые. И мы с вами более подробно рассмотрим устройство таких двигателей и, кроме того, выясним, почему  [c.15]

Предлагается новый двигатель — воздушно-реактивный двигатель внешнего сгорания. Двигатель не имеет камеры сгорания и представляет собой крыло самолета с расположенными в нем форсунками и свечами (у передней кромки крыла). Сгорание происходит вне крыла, в наружном воздухе, вблизи критической точки.  [c.98]

Двигатель воздушно-реактивный 122  [c.421]

Двигатель воздушно-реактивный 661 и д.  [c.733]

Двигатель воздушно-реактивный прямоточный 82  [c.241]

Дверной оклад неполный 830. Двигатели воздушные реактивные 82.  [c.464]

Дверной оклад неполный 836, XIX. Двигатели воздушные реактивные  [c.458]

Двигатель воздушно-реактивный 13  [c.488]

Диапазон температур, в пределах которого реально работают конструкционные материалы, выходит далеко за рамки указанных нормальных условий. Есть конструкции, где материал находится под действием чрезвычайно высоких температур, как, например, в стенках камер воздушно-реактивных и ракетных двигателей. Имеются конструкции, где, напротив, рабочие температуры оказываются низкими. Е)то — элементы холодильных установок и резервуары, содержащие жидкие газы.  [c.69]

К такого рода конструкциям относятся, например, радиаторы систем энергопитания и двигатели космических кораблей, воздушно-реактивные двигатели, которые имеют специальное вспомогательное оборудование, предназначенное для охлаждения основного. Существование дополнительных узлов уменьшает эффективность и к. п. д. конструкции.  [c.201]

Задача 1425. Самолет с воздушно-реактивным двигателем совершает прямолинейный горизонтальный полет. Определить скорость самолета как функцию времени, считая, что масса q отбрасываемых частиц в единицу времени равна массе присоединяющихся частиц воздуха (т. е. пренебрегая массой впрыскиваемого топлива). Принять абсолютную скорость присоединяющихся частиц воздуха равной нулю, а относительную скорость отбрасываемых частиц — постоянной и равной и. Начальная масса самолета т . Силами сопротивления пренебречь.  [c.516]

Понятие о точке переменной массы. Обычно в теоретической механике масса движущегося тела рассматривается как величина постоянная. Между тем можно указать много примеров движения тел, когда масса их изменяется с течением времени. При этом изменение массы может происходить путем отделения от те за его частиц или присоединения к нему частиц извне. Примерами подобного изменения массы движущегося тела являются в первом случае — ракеты разных классов, реактивные снаряды, ракетные мины и торпеды, во втором— движение какой-нибудь планеты, масса которой возрастает от падающих на нее метеоритов. Обе причины переменности массы одновременно действуют, например, в реактивном самолете с прямоточным воздушно-реактивным двигателем, когда частицы воздуха засасываются в двигатель из атмосферы и затем выбрасываются из него вместе с продуктами горения топлива. Мы будем рассматривать только тот случай, когда процесс отделения от тела или присоединения к нему частиц происходит непрерывно. Тело, масса которого непрерывно изменяется с течением времени вследствие присоединения к нему или отделения от него материальных частиц, называют телом переменной массы. Если при движении тела переменной массы его размерами по сравне-  [c.593]


Для увеличения силы тяги нужно увеличивать либо массу поступающего воздуха Но. либо скорость с, с которой он вылетает, либо и то и другое вместе. Скорость с определяется тем, насколько расширяется воздух в камере, т. е. какая температура поддерживается в камере. Для увеличения количества воздуха, поступающего в дви-гатель, применяется компрессор, расположенный у входного отверстия двигателя и приводимый во вращение турбиной, помещенной у выходного отверстия турбину вращает вылетающая из двигателя струя газа. Такие воздушно-реактивные двигатели получили название турбореактивных. Турбореактивный двигатель может создать силу тяги и при скорости самолета v = О (т. е. на стоянке), в то время как воздушно-реактивный двигатель без турбины в этом случае тяги не создает (так как воздух в него не поступает). На самолетах, снабженных воздуш-  [c.576]

По типу рабочего процесса реактивные двигатели подразделяют на воздушно-реактивные (турбореактивные) и ракетные.  [c.113]

На рис. 88 показана схема устройства воздушно-реактивного двигателя. При полете  [c.113]

Рис. 1.2. Диффузор воздушно-реактивного двигателя Рис. 1.2. Диффузор воздушно-реактивного двигателя
Последнее выражение применяется иногда при вычислении силы, действующей на входной диффузор воздушно-реактивного двигателя.  [c.43]

Пример 4. Установим взаимосвязь между скоростью полета и скоростью истечения из прямоточного воздушно-реактивного двигателя, схема которого изображена на рис. 1,11. Во входном участке двигателя происходит преобразование скоростного напора набегающего потока в давление,  [c.43]

Основы теории прямоточного воздушно-реактивного двигателя даны впервые Б. С. Стечкиным в 1929 г. ).  [c.43]

Наиболее совершенный цикл работы прямоточного воздушно-реактивного двигателя был бы получен в том случае, если бы сжатие воздуха на участке н — к (рис. 1.11) осуществлялось по идеальной адиабате и скорость потока была бы доведена до нуля, подвод тепла в камере сгорания k — w происходил бы при постоянном давлении, после чего выхлопная смесь расширялась бы в сопле ю — а до атмосферного давления также по идеальной адиабате. Прямоточный воздушно-реактивный двигатель, работающий по указанному совершенному циклу, называют идеальным.  [c.44]

Итак, в идеальном прямоточном воздушно-реактивном двигателе скоростной напор потока в выхлопном отверстии равен скоростному напору полета.  [c.44]

Интересна одна особенность прямоточного воздушно-реактивного двигателя если сохранять неизменной температуру в камере сгорания, то величина реактивной тяги (см. 5, пример 4)  [c.55]

Повышение давления в прямоточном воздушно-реактивном двигателе достигается за счет динамического сжатия воздуха перед входом в двигатель и в его диффузоре. Такой двигатель, как мы видели, эффективен только при очень большой скорости полета и вовсе не способен развивать  [c.55]

Если рассматриваемое тело представляет собой летательный аппарат, снабженный воздушно-реактивным двигателем, то в сверхзвуковой струе воздуха, которая тормозится при втекании в двигатель, также происходит скачок уплотнения. Принципиально можно представить себе и плавный переход сверхзвукового потока в дозвуковой, осуществляемый посредством специального обратного сопла, установленного на входе в двигатель. При этом не было бы потерь полного давления. Однако торможение сверхзвукового потока таким способом осуществить в полной мере не удается, в силу чего приходится мириться с существованием ударных волн и наличием соответствующего волнового сопротивления.  [c.114]


Эта же формула определяет тягу воздушно-реактивного двигателя любого типа при работе на месте, когда начальное количество движения воздуха, поступающего в двигатель, равно нулю. Преобразуем эту формулу при помощи полученных выше соотношений, для чего в ее правой части заменим выражение импульса газа в выходном сечении сопла согласно формулам (119) и  [c.245]

Таким образом, сила тяги воздушно-реактивного двигателя определена ускорением воздуха, прошедшего через него, но возникает вопрос, за счет чего же получено внутри туннеля двигателя ускорение воздуха. Ведь если внутри туннеля поставить винт, воздушный пропеллер, то его чем-то надо приводить в движение, т. е. надо иметь еп е какой-то двигатель. Под реактивным же двигателем мы понимаем устройство, которое, давая тягу, не требует для своей работы никакого другого двигателя. Воздушно-реактивный двигатель является, таким образом, сложной машиной, пред-ставляюп ий собой сочетание теплового двигателя с устройством, вызывающим ускорение проходящего через двигатель воздуха и приводящимся в движение этим тепловым двигателем.  [c.13]

Иноземцеву принадлежат учебники по тепловым двигателям, термодинамике и термохимии. Из них можно назвать следующие Курс тепловых двигателей Авиационные газотурбинные двигатели Основы теории реактивных двигателей Воздушно-реактивные двигатели Курс специальной термодинамики Основы термодинамики и кинетики химических реакций и др.  [c.648]

Р. Д. классифицируют по роду рабочего процесса, виду топлива, характеру источника энергии, способу передачи энергии рабочему телу и др. признакам. Паиболее характерно деление Р. д. на три основные группы ракетные двигатели, воздушно-реактивные и электроракетные. В свою очередь, указанные группы классифицируются по дру им характерным признакам. ( дна и.ч во.чможных классификаций Р. д. приведена на рис. 3.  [c.379]

Воздушно-реактивные двигатели (ВРД) в зависимости от процесса подвода теплоты могут быть разделены на прямоточные с горением при р = onst и пульсирующие с горением при о == onst они бывают бескомнрессорные н турбокомпрессорные.  [c.289]

Идеальные циклы для воздушно-реактивных двигателей те же, что и для газотурбинных установок с подводом теплоты при о = == onst и р = onst.  [c.289]

На рис. 18-15 представлена схема прямоточного воздушно-реактивного двигателя с подводом теплоты при р = onst. Двигатель состоит пз диффузора 1, где сжимается воздух, камеры сгорания 2, в которую через ряд форсугюк вводится топливо. Воспламенение  [c.289]

В последние годы закрутку потока стали широко использовать для интенсификации процесса горения. При создании эффективных фронтовых устройств камер сгорания в воздушно-реактивных двигателях, для стабилизации фронта пламени в различных камерах сгорания, при создании эффективных горелочных устройств, плазмотронов с вихревой стабилизацией все большее применение находят потоки с различной интенсивностью закрутки. Это обусловливает актуальность работ, направленных на понимание и описание термогазодинамики закрученных течений как при окислительно-восстановительных экзотермических химических реакциях, так и в их отсутствие. Необходимо вооружить практику методиками экономного расчета и проектирования технических устройств с закруткой потока, а сами устройства сделать более эффективными и экологически чистыми.  [c.7]

Тякой случай имеет, например, место для самолета, иа котором установлен воздушно-реактивный двигатель, засасывающий воздух из атмосферы и выбрасывающий его вместе с продуктами горения топлива. Так как доля этих продуктов в отбрасываемом воздухе очень мала (не превышает 2—3%), то здесь практически можно считать Gi =G2 =G . Кроме того, очевидно, что относительная скорость присоединяемой массы воздуха —v, где v — скорость самолета. Тогда, полагая и =и, получим соответственно для вектора Ф и его модуля Ф значения  [c.289]

Использование покрытий в воздушно-реактивных двигателях позволяет повысить температуру рабочего тела, что равнозначно повышению мощности двигателя при постоянстве его остальных параметров. С этой целью на внутреннюю поверхность двигателя ракеты Х-15 наносилось покрытие Рокайд-2 , что позволило увеличить к. п. д. двигательной установки (рис. 8-26) [112].  [c.207]

Принцип действия воздушно-реактивного двигателя состоит в следующем (рис. 370). При полете самолет а во входное (переднее) отверстие двигателя поступает атмосферный воздух со скоростью v, с которой летит самолет. В камере сгорания двигателя этот оздух нагревается пламенем горящего топлива (вследствие чего объем воздуха увеличивается) и вместе с продуктами сгорания вылетает через выходное отверстие двигателя со скоростью с > t) (так как уходит из двигателя больший объем воздуха, чем входит). Масса сгорающего за секунду топлива ц, мала по сравнению с массой Хо прошедшего за это время через двигатель воздуха, и приближенно можно считать, что масса, выбрасываемая через выходное отверстие двигателя, также равна  [c.576]

Рис. 1.11. Схема прямоточного воздушно-реактивного двигателя е — входное сечение, к — начальное сечение камеры сгорания, w — конечное сечение калгеры сгорания, а — выходное сечение сопла Рис. 1.11. <a href="/info/290092">Схема прямоточного воздушно-реактивного двигателя</a> е — входное сечение, к — начальное сечение <a href="/info/30631">камеры сгорания</a>, w — конечное сечение калгеры сгорания, а — выходное сечение сопла
При некотором значении скорости полета турбокомнрессорное устройство в целом перестает повышать давление в двигателе, т. е. становится нецелесообразным. На этих скоростях полета работа воздушно-реактивного двигателя обеспечивается сжатием воздуха только за счет скорости наддува.  [c.48]


Подробное изложение теории турбореактивного двигателя см. в книге Теория воздушно-реактивных двигателей/Под ред. С. М. Шляхтенко.— М. Машиностроение. 1987.  [c.55]

Исли дав.чение за турбиной выше, чем перед компрессором, то приведенная скорость истечения при одинаковых условиях полета у турбореактивного двигателя выше, чем у прямоточного воздушно-реактивного двигателя. Но в последнем возможны более высокие температуры. Поэтому прямоточный воздушно-реактивный двигатель может развивать большие удельные тяги даже при меньших давлениях в реактивном сопле. Однако для увеличения тяги в турбореактивном двигателе можно поместить за турбиной вторую камеру сгорания (так называемую форсажную камеру), в которой газ может дополнительно нагреваться до такой же температуры, как и в прямоточном воздушно-реактивном двигателе. В этом случае тяга турбореактивного двигателя существенно возрастает.  [c.57]

С изменением скорости полета давление на срезе сопла в воздушно-реактивном двигателе изменяется. По этой причине неизменное выходное сечение становится не соответствующим расчетному режиму. Можно выделпть две области нерасчетных условий первая — при недостаточной, вторая — при слишком большой площади выходного отверстия сопла.  [c.153]


Смотреть страницы где упоминается термин Двигатели воздушные реактивны : [c.562]    [c.6]    [c.218]    [c.576]    [c.113]    [c.53]    [c.55]    [c.43]   
Техническая энциклопедия Том19 (1934) -- [ c.82 ]



ПОИСК



Атомные прямоточные воздушно-реактивные двигатели

Бескомпрессорные воздушно-реактивные двигатели

Воздушно-реактивные двигател

Воздушно-реактивные двигател

Воздушно-реактивный двигатель внешнего сгорания

Газодинамический расчет ядерного сверхзвукового прямоточного воздушно-реактивного двигателя

Двигатель воздушно-реактивны идеальный

Двигатель воздушно-реактивный

Двигатель воздушно-реактивный

Двигатель воздушно-реактивный жидкостной (ЖРД)

Двигатель воздушно-реактивный прямоточный Лидкость перегретая

Двигатель воздушно-реактивный прямоточный график

Двигатель воздушно-реактивный прямоточный коэффициент полезного действия

Двигатель воздушно-реактивный прямоточный схема

Двигатель воздушно-реактивный твердотопливный

Двигатель воздушно-реактивный тягой

Двигатель воздушно-реактивный управления

Двигатель воздушно-реактивный электрический

Двигатель прямоточный воздушно-реактивный

Двигатель прямоточный воздушно-реактивный идеальный

Двигатель реактивный

Двигательные установки с воздушно-реактивными двигателями

Дозвуковые прямоточные воздушно-реактивные двигатели

Идеальные циклы воздушно-реактивных двигателей

К п д бескомпрессорного турбокомпрессорного воздушно-реактивного двигателя

Камеры сгорания прямоточных воздушно-реактивных двигателей

Компрессорные воздушно-реактивные двигатели

Конспект лекций по теории воздушно-реактивных двигателей

Коэффициент полезного действия цикла воздушно-реактивного двигател

Коэффициент потери скорости в воздушно-реактивном двигателе

О прямоточных воздушно-реактивных двигателях для летательных аппаратов

Перспективы развития прямоточных воздушно-реактивных двигателей

Принципиальные схемы маслосистем турбокомпрессорных воздушно-реактивных двигателей

Прямоточные воздушно-реактивные двигатели с горением топлива при

Прямоточпый воздушно-реактивный двигатель

Пульсирующий воздушно-реактивный двигатель

Реактивная сила. Воздушно-реактивные двигатели

Реактивность

Реактивные двигатели Воздушно-реактивные двигатели

Реактивные двигатели Воздушно-реактивные двигатели

Самолеты с воздушно-реактивными двигателями

Сверхзвуковые прямоточные воздушно-реактивные двигатели

Сила тяги воздушно-реактивного двигателя

ТЕОРИЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ И ЛОПАТОЧНЫХ МАШИН Теория воздушного реактивного двигателя

Теория воздушно-реактивных двигателей

Термический к цикла воздушно-реактивного двигателя

Турбокомпрессорный воздушно-реактивный двигатель (ТКВРД)

Цикл бескомпрессорного воздушно-реактивного двигателя

Цикл прямоточных воздушно-реактивных двигателей с горением топлива при постоянном давлении

Цикл турбокомпрессорного воздушно-реактивного двигателя

Циклы воздушно-реактивных двигателей

Циклы газотурбинных установок и воздушно-реактивных двигателей



© 2025 Mash-xxl.info Реклама на сайте