Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы полимеров

На наплавляемый металл, сплав, полимер (пластмассу), резину, а также на отливки, с которыми соединяются в процессе литья одна или несколько деталей, чертежи не выпускаются и обозначения им не присваивают. Их записывают в спецификацию как материал с указанием в графе Кол его массы, а в графе Примечание единицы ее измерения.  [c.262]

Параметры То и То = gJo - постоянные для конструкционных металлов и их сплавов, полимеров и ионных кристаллов, совпадают по величине соответственно с периодом и частотой собственных тепловых колебаний атомов в кристаллической решетке твердого тела (равны - Ю" си 10 - Ю Гц). Параметр у характеризует структурный коэффициент, определяющий чувствительность материала к напряжению. Выражения (3.1) и (3.2) справедливы для чистых металлов, сплавов, полимерных материалов, полупроводников, органического и неорганического стекла и др.  [c.124]


В лаборатории теории трения Института машиноведения К. С. Ляпиным 63, 73] проведена большая экспериментальная работа по определению величины То и р для некоторых чистых металлов, сплавов, полимеров при трении без смазки и с различными смазками. Значения То и р зависят от скорости относительного перемещения образцов, степени их очистки от всевозможных загрязнений и адсорбированных на поверхностях пленок. На приработанных поверхностях всегда имеются пленки и загрязнения, поэтому величины То и р необходимо определять для реальной пары трения в условиях ее работы.  [c.67]

Конструкционные материалы (металлы, сплавы, полимеры) не являются жидкостями. Однако в особых условиях они проявляют такие особенности, которые напоминают свойства вязкой жидкости. Учет этих обстоятельств проведем на примерах.  [c.394]

Свойства матрицы определяют, как правило, уровень рабочих температур композиции, характер изменения ее свойств при воздействии температуры, атмосферных и других факторов, режимы получения и переработки материалов. В качестве матриц используют металлы и сплавы, полимеры, кислородные и бескислородные тугоплавкие соединения, кокс и пироуглерод.  [c.586]

Дальнейшие эксперименты на различных материалах (сталях, алюминиевых и титановых сплавах, полимерах) показали, что гипотеза Дагдейла выполняется достаточно хорошо лишь для весьма мягких сталей в других материалах наблюдаются более или менее систематические отклонения. Тем не менее, количественные расчеты, проводимые на основе гипотезы Дагдейла, оказываются для тонких пластин в достаточно хорошем согласии с опытными данными даже тогда, когда гипотеза Дагдейла не выполняется. Этот факт объясняется на основе точных теоретических расчетов тем, что пластическая область вблизи конца сквозной трещины в тонкой пластине имеет сплюснутую форму (см. 5 гл. IV).  [c.284]

Сплав полимеров СН-28П — См. предыдущее, но не применяется для изготовления типографских шрифтов.  [c.371]

Сплавы полимеров 148—151 Стабилизаторы 76—79 Стеклонаполненные термопласты 188 сл.  [c.237]

В этой связи исключительное значение приобретают работы в области триботехнического материаловедения (сплавов, полимеров, композитов, порошковых материалов, керамики, покрытий, упрочнения поверхностей трения, смазочных материалов, присадок и т.д.), а также теоретические и экспериментальные исследования в области физико-химической механики процессов трения и изнашивания с использованием новейших испытательных средств и измерительной техники, которые могут раскрыть и изыскать новые способы снижения потерь на трение и повышения износостойкости машин, приборов и оборудования.  [c.20]


В качестве матрицы применяют металлы (алюминий, магний, их сплавы), полимеры (эпоксидные, фенолформальдегидные смолы, полиамиды), керамические, углеродные материалы.  [c.174]

В современном машиностроении для изготовления деталей применяются различные металлы, их сплавы, а также неметаллические материалы-полимеры (пластмассы), резина, древесина и др.  [c.186]

Практические применения радиационной химии можно подразделить на оборонительные и наступательные . На первом этапе развития ядерной промышленности в основном велись работы оборонительного плана по радиационно-химической защите материалов в реакторах и вообще в условиях высокой радиоактивности (в частности, в космосе). При сильном облучении металлы становятся склонными к коррозии, хрупкости, смазочные масла портятся, в изоляторах увеличивается электропроводность и т. д. Была проведена большая работа по изысканию материалов, стойких по отношению к облучению.. Так, было найдено, что из металлов в условиях облучения хорошо сохраняют свои антикоррозийные и механические свойства цирконий и его сплавы. Хорошей радиационной стойкостью обладают и некоторые полимерные материалы, например, полистирол, для которого малы выходы как сшивания, так и деструкции (радиационно-стабильные (обычно ароматические, см. п. 3) группы, не только сами устойчивы по отношению к излучению, но могут защищать от разрушения и другие полимерные молекулы, отсасывая от них энергию (так называемая защита типа губки). Применяется также защита типа жертвы . В этом случае защищающие молекулы, например, могут захватывать образующийся в радиационно-химическом процессе атомарный водород, препятствуя последнему реагировать с другими молекулами.  [c.665]

Вследствие названных причин абразивная износостойкость эластичных полимеров (резин) в несколько раз выше износостойкости твердых полимеров (пластмасс). В среднем износостойкость полимерных материалов в условиях абразивного изнашивания в 5-10 раз ниже износостойкости сталей и сплавов.  [c.130]

Клеевые соединения получили в последние годы широкое распространение во многих отраслях машиностроения благодаря появлению клеящих материалов на основе синтетических полимеров, которые обеспечивают склеивание практически всех материалов промышленного значения (стали, сплавы, медь, серебро, древесина, пластики, фарфор, ткани, кожа и многие другие), а также возможности склеивания металлов и неметаллов. Иногда склеивание представляет собой единственный способ соединения разнородных материалов в ответственных конструкциях.  [c.482]

Конструкционные материалы. В качество материала машиностроительных конструкций используются в основном металлы и их сплавы, а также различные неорганические и органические материалы (полимеры, пластмассы, волокна, керамика и др.). В последнее время нашли применение композиционные материалы, состоящие из высокопрочных нитей стекла, бора, углерода и связующего (полимеров и металлов). В строительных конструкциях используются бетон (смесь крупных и мелких каменных частиц, скрепленных цементом), железобетон (бетон, усиленный стальными стерж-нями), кирпич, дерево и другие материалы.  [c.11]

Свойства ползучести и длительной прочности проявляются у углеродистых сталей при Т > 300 С, для легированных сталей при Т > 350°С, для алюминиевых сплавов при Т > 100 С. Для некото-])ых материалов (полимеров, бетонов и др.) указанные свойства наблюдаются и нрн нормальных температурах.  [c.87]

Описаны избранные методы исследования, используемые в металловедении (некоторые из них стали классическими). Рассматриваемые методы предназначены в основном для изучения свойств металлов и сплавов, однако они могут быть использованы также при исследовании полимеров, неорганических неметаллических материалов, силикатов и керамики, строительных материалов.  [c.24]

Твердые смазки. Расширение диапазона условий, в которых работают узлы трения современных машин — работа в вакууме, при высоких и низких температурах, при больших давлениях и скоростях, при действии агрессивных сред и т. д., а также наличие в машине труднодоступных для смазки мест или недопустимость жидкой смазки (текстильные и пищевые машины), привели к появлению новых видов смазок. Поскольку жидкие и консистентные смазки непригодны для указанных целей, применяются твердые смазки, которые используются в виде тонких покрытий, в качестве структурных составляющих подшипниковых сплавов, как порошки и присадки к обычным смазкам, путем пропитки пластмасс и другими способами. В качестве материала для твердых смазок обычно используются графит, дисульфид молибдена, полимеры (фторопласты, графитопласты, капрон), металлокерамические композиции, пластичные металлы (серебро, золото, свинец, индий), металлические соли высокомолекулярных жирных и смоляных кислот (мыла) [180, 190].  [c.251]


Типичные кривые напряжение — деформация при одноосном растяжении для двух часто используемых типов матрицы представлены на рис. 1. На этом рисунке видно, что как для высоко-полимера (эпоксидной смолы 828/1031), так и для металла (алюминиевого сплава 2024) проявляется нелинейность, особенно ярко выраженная для металла. Очевидно, упругий анализ применим только на начальном участке кривой напряжение — деформация.  [c.197]

Политетрафторэтилен (фторопласт-4) по химической стойкости превосходит все другие синтетические полимеры, благородные металлы, специальные сплавы, керамику и другие материалы. Изделия из фторопласта-4 изготовляют методом вальцевания или прессования при температуре около 400 °С.  [c.126]

Интересные результаты получены гари использовании сканирующего (развертывающего) электронного микроскопа [99]. При изучении излома покрытий и продуктов, нерастворимых в царской водке, в золотых осадках и сплавах золота с кобальтом и индием, обнаружены полимерные включения, содержащие до 1,1% углерода. Предполагается, что на аноде образуется продукт приблизительного состава (H N)4, который переносится на катод и включается в покрытия в виде островков размером обычно 0,1 мкм и менее. Иногда размеры островков достигают 2,5 мкм. Органические полимеры в золотых осадках могут содержать помимо азота и углерода кислород.  [c.36]

В предлагаемой серии термин коррозия используется в очень широком смысле, включающем не только разрушение металла в водных средах, но и явление, которое обычно называют высокотемпературным окислением. Более того, в дальнейшем в данной серии планируется рассмотрение коррозии всех твердых веществ в разнообразных средах. В современной технике наряду с металлами и сплавами используются стекла, вещества с ионным строением, полимеры и композиты всех перечисленных материалов. Представляющие практический интерес коррозионные среды включают жидкие металлы, широкую номенклатуру газов, неводные электролиты и другие неводные жидкости. Комплексные процессы разрушения материалов, основанные на явлениях износа, кавитации, фреттинга, рассматриваются с учетом последних достижений науки о коррозии. Ученые смежных областей науки в частности физики, металлофизики, физико-химики и электроники, могут оказать существенное влияние на решение многих коррозионных проблем. Можно надеяться, что публикуемые обзоры позво-  [c.7]

Полимеры имеют низкий удельный вес и относительно высокую прочность. В качестве антифрикционных материалов и уплотнителей они по сравнению с металлами и сплавами обладают следующими преимуществами низким коэффициентом трения, способностью к гашению вибраций и к поглощению твердых частиц, высокой износостойкостью и сопротивляемостью, к воздействию воды, масел и других смазок.  [c.61]

В отличие от граничного трения в режиме ИП"в начальной стадии происходят процессы, создающие благоприятные условия для образования прочной связи между продуктами полимеризации и металлом низкие удельные давления, соизмеримые с прочностью пленки, свободные химические связи, возникающие при избирательном растворении легирующих элементов сплава в начальной стадии трения эти связи могут быть использованы для взаимодействия с образующимся на поверхности полимером. Отсутствие на поверхности окисных пленок также способствует взаимодействию. Возникающие в процессе деструкции при трении свободные радикалы органических веществ могут образовывать полимерные цепи, прикрепляющиеся активным концом к металлической подложке, и создавать таким образом полимерные образования. Такие образования наблюдались в режиме ИП [12, 40].  [c.16]

М, с. конструкц. материалов (металлов и сплавов, полимеров, стекла, керамики, текстильных нитей и тканей, дерева и др.) устанавливают механич. испытаниями, целью к-рых чаще всего является нахождение связи между приложенными механич. напряжениями к материалу и его деформацией. М. с. существенно зависят от структуры испытываемого материала и схемы приложенных сил. Поэтому они не являются физ. константами и не характеризуют сил межатомного взаимодействия материала. Для простоты сопоставления М. с, разных материалов испытания проводят при несложных, легко воспроизводимых схемах нагружения (приложения внеш. сил) — одноосном растяжении (или сжатии), изгибе, кручении. При сопоставлении М. с. разных материалов или одного материала с разной структурой следует иметь в виду соблюдение условий подобия испытаний (одинаковые схемы напряжённого состояния, скорости приложения нагрузок и физ.-механич. условия среды испытаний, а также геом. подобие — форма и размеры испытуемого образца). М, с. существенно зависят от темп-ры в давления,  [c.129]

Структурообразующую основу нанокомпозитов составляют ультра-дисперсные частицы размером 5...500 им. Сравнительно небольшие добавки таких частиц способны значительно улучшить структуру и свойства матричных материалов (металлов и сплавов, полимеров, керамик и т. п.).  [c.140]

Масло со смолой нагревают в течение 1 часа до 305° м сплав полимери-зуют при этой температуре 40—50 мин. Затем его охлаждают до 230° и раз- бавляют растворителем. В разбавленный лак вводят растворимый сиккатив из расчета 0,5% РЬ, 0,08% Со н 0,05% Мп от веса масла.  [c.240]

Рассмотренные выше экспериментальные данные и простейшие критерии длитёльной прочности относились, как правило, к изотропным материалам — ста м, сплавам, полимерам и др.  [c.136]

Применяемые изоляционные лаки должны не только хорошо пропитывать ткань — в случае разогревания при работе ротора они не должны разбрызгиваться, а для этого необходим переход пленки в состояние, неплавкое при температуре эксплоатации. Большинство пропиточных лаков состоит из сплавов полимери-зованных масел с высоко-плавкими битумами, содержащих небольшое количество сиккатива и растворитель. Лаки №№ 458, 447 и 460 применяются с последующей печной сушкой при температуре 120—140°. Для этой же цели служит глифталевый лак № 1154, имеющий повышенную маслостойкость (применяется для трансформаторов) и ряд других глифталевых, масляно-битумных и масляных лаков.  [c.413]

Необходимо иметь в виду, что количественные характеристики каждой из трех ( юрм напряженно-де( юрмируемого состояния находятся в строгой зависимости от структурно-чувствительных свойств трущихся материалов и среды. Это означает, что для каждого класса смазочных материалов и материалов трущихся тел (металлов, компактных и композиционных сплавов, полимеров, дерева, минералов и др.) существуют определенные, присущие им энергетические соотношения, обусловливающие специфику процессов трения и разрушения. Эта специфика определяется особенностями строения граничного слоя и поверхностных слоев твердых тел и теми изменениями, которые происходят при нагружении трением.  [c.120]


Существует значительное ко.яичество неметаллических материалов, которые успешно могут заменить металлы и их сплавы. Все более широкое применение получают различные виды полимеров (пластмасс), которые благодаря своим особым физическим и механическим свойствам позволяют использовать их для литья под давлением, прессования, формовки из листов, сварки, склеивания, наплавления и других технологических процессов изготовления деталей. Полимерные материалы (пластмассы) подразделяются на две группы термопластичные и термореактивные.  [c.188]

К таким материалам относятся полимеры, бетоны, сплавы, металлы (при повышенных температурах) и др. Некоторые конструкции под нагрузкой (например, амортизирующие и виброза-щитные устройства) в целом ведут себя как упруговязкие системы.  [c.215]

Паркинсон и Кварингтон 201] исследовали теплоемкость сплава Вуда и высокотемпературного полимера аральдита. Их результаты ниже 10° К представлены на фиг. 29. Между 10 и 20° К тепло-змкости названных веществ могут быт1, представлены следующими формулами  [c.370]

Заметим, что для всех материалов, применяемых в технике, кроме резины и полимеров в каучукообразном состоянии, модуль упругости Е весьма высок по сравнению с пределом упругости или пределом текучести. Так, для стали = 2 10 кгс/мм Поэтому велитана упругой деформации для технических сплавов  [c.46]

Рассмотренньп" пример наглядно показывает, каким образом изменение условий внешнего энергетического воздействия и внутреннего элементного состава системы преобразует фазовый состав системы. Но поскольку каждая фаза имеет свои физические свойства, то и свойства систем ) изменяются в соответствии с изменением качественного и количественного фазового состава. Эти свойства материальных систем (металлов, полимеров, сплавов, ком1юзиционных материалов) и термодинамический подход к оценке фазового состояния и фазовых переходов в системах являются физической основой известных и разрабатываемых методов структурной модификации конструкционных материалов, включая материалы трибосистем.  [c.150]

Назначение экструзйонной установки заключается в том, что она с помощью непрерывно вращающегося винта (шнека) в обогреваемом цилиндре сжимает загруженный в ее бункер термопластичный в виде гранул полимер, нагревает и расплавляет его, перемешивает, гомогенизирует и в виде однородного вязкого сплава подает в головку. Давление, развиваемое шнеком, передается на материал в головке, и поэтому он выдавливается из нее черег формирующее отверстие в виде заданного изделия.  [c.116]

Для обеспечения высокой чувствительности и локальности измерений, а также возможности непрерывной оценки содержания ферритной фазы в стали в качестве намагничивающего элемента первичного преобразователя использован миниатюрный постоянный магнит из сплава ЮНДК 24, а в качестве магнитометрического элемента — дифференциальный микроферрозонд-полимер ФП-0,1Х2. Оба элемента совмещены в единой конструкции (накладном преобразователе), обеспечивающей отстройку от начального сигнала. Сердечники феррозонда расположены у полюса магнита симметрично  [c.65]

Пзначительно меньшей по сравнению с упругой постоянной другой поверхности, то в этом случае при расчете контактных деформаций последней постоянной можно пренебречь. Это в первую очередь относится к парам трения полимер — металл и некоторым парам цветные металлы и сплавы — черный металл.  [c.59]

Несмотря на появление большого числа новых видог материалов пластмасс, полимеров, стеклопластиков к т. п., — металлы занимают и еще долго будут занимать главенствующее положение среди конструкционных материалов. Номенклатура применяемых сплавов постоянно расщиряется, а состав их усложняется. Сейчас количество марок сталей, чугунов, цветных металлов и их сплавов исчисляется десятками тысяч, причем каждый из них обладает определенным комплексом свойств и параметров.  [c.212]

Рассмотрены асе факторы, вызывающие разрушение в различных морских условиях сталей, меди, никеля, алюминия, титана, а также неметаллических материалов, включая полимеры и композиционные материалы на их основе, керамику, изделия из бумаги, текстиль, магнитную ленту. Показано поведение деталей радиоэлектронной аппаратуры, ракетного топлива и взрывчатых веществ. Приведены сведения о скорости коррозии металлов и их сплавов на различных глубинах. Представлен экспериментальный материал, полученный при изучении свыше 20000 образцов сплавов 475 марок при их выдержке в натурных условиях от трех месяцев до трех лет. Описана также коррозия, контролируемая биофакторами, в применении к различным географическим районам.  [c.4]

Фторопласт-4 является высококристалличным полимером. Он представляет собой сплав твердых кристаллов с аморфными участками, находящимися в высокоэластнческом состоянии. Соотношение кристаллических и аморфных участков определяется степенью закалки при охлаждении изделия. Наибольшая степень кристалличности фторопласта-4 достигается при температуре 315° С. Если изделие после спекания охлаждается медленно и длительное время выдерживается при температуре около 300° С, содержание кристаллов становится большим и твердость образца возрастает. Если быстро охладить изделие, то оно вследствие сохранения аморфной формы приобретает закалку и хрупкость его уменьшается. Усадка линейных размеров фторопласта-4 после таблетирования и спекания [25] составляет4—9%. Для получения изделий с точными размерами требуется дополнительная механическая обработка изделий.  [c.34]

В результате прессования получается изделие, не обладающее достаточной механической прочностью, так как частицы полимера не имеют однородной структуры, и только в процессе термообработки, благодаря оплавлению их, достигаются требуемые свойства материала и его монолитность. Поэтому для получения изделий хорошего качества требуется тщательное выполнение режима спекания. Отпрессованные изделия (таблетки) помещаются в печь специальной конструкции, медленно нагреваются и выдерживаются при заданной температуре до тех пор, пока материал станет совершенно прозрачным, т. е. сплавится. Следует иметь в виду, что полную прозрачность приобретает полимер, достаточно уплотненный при прессовании. У недопрес-сованного изделия, независимо от длительности спекания, остаются внутренние поры в виде точек или пятен молочного цвета в прозрачном теле изделия. Изделие в печи не рекомендуется держать дольше, чем требуется для спекания (достижения прозрачности) во избежание ухудшения его качества. Чем ниже молекулярный вес фторопласта-4, тем быстрее он спекается.  [c.50]


Смотреть страницы где упоминается термин Сплавы полимеров : [c.38]    [c.22]    [c.213]    [c.277]    [c.173]    [c.284]    [c.161]   
Термопласты конструкционного назначения (1975) -- [ c.148 , c.151 ]



ПОИСК



Модифицирование магниевых сплавов полимеров 3—22 —

Полимерия

Полимеры

Термопластичные полимеры сплавы

Цветные сплавы, полимеры и композиционные материалы



© 2025 Mash-xxl.info Реклама на сайте