Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аморфно-кристаллические полимер

Условия полимеризации аналогичны полимеризации этилена высокого давления. Полимер в первоначальном виде представляет собой рыхлый волокнистый порошок, прессующийся без нагрева. При нагревании Ф-4 не плавится, а только размягчается и при t = 360— —380 °С таблетки из Ф-4 спекаются в плотную массу. Ф-4 является аморфно-кристаллическим полимером.  [c.68]

В реальных аморфно-кристаллических полимерах изменение свободного объема с температурой является промежуточным между изменением в полностью аморфном и полностью кристаллическом  [c.18]


Наиболее полно изучены закономерности изменения свойств при ориентации аморфно-кристаллических полимеров, структурное совершенство которых позволяет применять такие методы исследования, как рентгеноскопия, малоугловое рентгеновское рассеяние, поляризационно-оптические и др. Менее изучены ориентированные аморфные полимеры, поскольку эффект ориентации в них выражен значительно слабее, а исследования структуры прямыми методами затруднены.  [c.123]

АБС-пластики 152 сл. Аморфно-кристаллические полимеры 18  [c.235]

Структура полимеров может быть аморфной и кристаллической. Под кристалличностью полимеров пон а >т упорядоченное (параллельное) расположение звеньев и цепей. В кристаллических полимерах обычно присутствует некоторое количество аморфной фазы.  [c.9]

Кристаллические полимеры обычно содержат как кристаллическую, так и аморфную фазы. Многие свойства полимеров зависят от соотношения аморфной и кристаллической фаз — степени кристалличности.  [c.203]

Электрическая прочность с повышением температуры резко снижается в области для аморфных и T ,j, для кристаллических полимеров. Полярные полимеры имеют более высокую пр. чем, неполярные, в области комнатных более низких температур.  [c.204]

Полиэтилен — полимер аморфно-кристаллического строения, состоящий из цепных и разветвленных макромолекул. Выпускается в виде гранул или тонкодисперсных порошков (неокрашенных или окрашенных в разные цвета), а также в виде пленок (тонкие пленки прозрачны), листов, блоков, труб, фасонных деталей и т. п. Различают полиэтилены высокого (ПВД), среднего (ПСД) и низкого (ПНД) давления. ПНД, обладающий более высокой плотностью, называют полиэтиленом высокой плотности (ПВП), а ПВД, имеющий меньшую плотность, — полиэтиленом низкой плотности (ПНП).  [c.88]

Кристаллические полимеры несколько отличаются от аморфных динамических поведением. Это обусловлено большей меж-молекулярной силой сцепления кристаллических областей и ограниченной подвижностью больших молекулярных сегментов. На кривых температурной зависимости tg i3 или А, появляется над температурой максимума аморфной фракции еще хотя бы  [c.58]

Величина средней удельной работы деформации а и работы а , расходуемой на деформацию образца до предела ползучести, в значительной степени зависит от скорости нагружения. Как следует из табл. 9 [3], эти значения изменяются в зависимости от скорости нагружения индивидуально для каждой пластмассы, поэтому нельзя вывести общую зависимость ударной прочности аморфных и кристаллических полимеров от скорости нагружения. Аналогичные выводы вытекают из табл. 10, составленной Винцентом [4], и из рабочих диаграмм, разработанных Ричардом [5], для некоторых аморфных и кристаллических полимеров (рис. 76, 77 и 78).  [c.68]


Микроскопическими и рентгеноструктурными исследованиями кристаллических полимеров, которыми являются рассматриваемые термопласты, установлено наличие в их структуре разнообразных надмолекулярных образований пачек молекул, сферолитов и монокристаллов. Упорядоченные (кристаллические) зоны в изделии чередуются с неупорядоченными (аморфными) зонами.  [c.45]

Кристаллические полимеры тяжелее аморфных кристаллизация аморфного полимера приводит к увеличению удельного веса на несколько сотых и даже на 0,1.  [c.11]

Кристаллические полимеры ниже температуры плавления — кристаллизации — являются твердыми, но имеют различную жесткость (см. рис. 201, кривая 2) вследствие наличия аморфной части, которая может находиться в различных состояниях. При кристаллическая часть плавится и термомеханическая кривая почти скачкообразно достигает участка кривой 1, соответствующего высокоэластической деформации, как у некристаллического полимера.  [c.440]

Для кристаллических полимеров зависимость напряжения от деформации выражается линией с четкими переходами (рис. 203). На первой стадии (участок /) удлинение пропорционально действующей силе. Затем внезапно на образце возникает шейка , после чего удлинение возрастает при постоянном значении силы до значительной величины. На этой стадии шейка (участок //) удлиняется за счет более толстой части образца. После того как весь образец превратился в шейку, процесс переходит в третью стадию (участок ///), заканчивающуюся разрывом. По структуре и свойствам материал шейки отличается от структуры и свойств исходного образца элементы кристаллической структуры ориентированы в одном направлении (происходит рекристаллизация). Зависимость напряжения от деформации при разных температурах и постоянной скорости растяжения для аморфного и кристаллического полимеров приведена на рис. 204. При I < /с кривые напряжение — деформация для кристаллического полимера подобны кривым для стеклообразного полимера.  [c.442]

Рис. 204. Влияние температуры на характер кривых напряжение—деформация а — аморфного термопласта ( 1 < б — кристаллического полимера Их у tt) Рис. 204. <a href="/info/222925">Влияние температуры</a> на характер <a href="/info/132227">кривых напряжение—деформация</a> а — аморфного термопласта ( 1 < б — кристаллического полимера Их у tt)
Некоторые свойства ориентированных аморфных и кристаллических полимеров одинаковы, однако они различаются фазовым состоянием, поэтому с течением времени у кристаллических полимеров улучшается их структура, а аморфные ориентированные полимеры чаще всего в дальнейшем дезориентируются (особенно при нагреве).  [c.443]

Большинство полимеров содержат как кристаллические, так и аморфные области. Кристаллические области в полимере не имеют ни правильной формы, ни совершённой решеточной структуры. В этих областях сегменты цепи образуют небольшие упорядоченные пачки или агрегаты — кристаллиты, напоминающие, но не совсем представляющие собой трехмерные кристаллические решетки низкомолекулярных кристаллов. В частично кристаллическом полимере его аморфные и кристаллические области будут иметь различные свойства, несмотря на их одинаковую химическую природу. Степень кристалличности полимера оказывает большое влияние на такие свойства полимеров, как плотность, твердость, проницаемость для жидкости, теплоемкость.  [c.317]

По фазовому состоянию полимеры подразделяются на аморфные и кристаллические. В аморфных полимерах макромолекулы образуют структуры в виде пачек либо глобул, которые построены из свернутых в клубки цепей. К ним относятся эпоксидные смолы ЭД1-0, ЭД-14, полиамиды, полистирол и т. д. Аморфная структура термически нестабильна и обладает малой живучестью. Кристаллическую структуру могут образовывать полимеры со строго регулярным строением линейных цепей. Кристаллическим полимерам присущи более высокие температуры плавления, повышенные механические и химические свойства.  [c.147]


Полимеры или пластмассы на их основе используются в твердом состоянии при температурах ниже (температуры стеклования). При температуре ниже /,р (температуры охрупчивания) полимер переходит в хрупкое состояние. Формообразование изделий из полимеров или пластмасс проводят в температурной области вязкотекучего состояния. Кристаллические полимеры с аморфной составляющей до температуры плавления (кристаллизаций) находятся в твердом состоянии, при кристаллическая составляющая полимера плавится и переходит в высокоэластичное состояние аналогично некристаллическим полимерам. Выше температуры (температуры начала вязкого течения) аморфные и кристаллические полимеры находятся в вязкотекучем (гелеобразном) состоянии.  [c.148]

Величина деформации полимеров зависит от температуры и скорости приложения нагрузки. Для аморфных полимеров характерно снижение прочности с увеличением температуры (при постоянной скорости деформации) и сростом скорости приложения нагрузки (при постоянной температуре) (рис. 9.4). Стеклообразные и кристаллические полимеры могут подвергаться ориентационному упрочнению, которое заключается в ориентации структуры полимера, находящегося в высокоэластичном или вязкотекучем состоянии, при статиче-  [c.149]

Фторопласт-4 имеет = 16.. 25 МПа, 5= 250-300%, размягчается при нагреве выше 400 С, можегг эксплуатироваться в интервале температур от минус 195 с до 250 С. Является аморфно-кристаллическим полимером. Практически он разрушается только под действием расплавленных щелочных металлов и элементарного фтора, кроме того, пластик не смачивается водой. Это наиболее высококачественный диэлектрик. Имеет очень низкий коэффициент трения (1=0,04), который не зависит от температуры При высокой температуре нагрева выделяется токсичный фтор. Применяют для изготовления труб, вентилей, кранов, насосов, уплотнительных прокладок, антифрикционных покрытий на металлах (подшипники, втулки).  [c.131]

Трифторхлорэтилен (ГОСТ 13744-87). Представляет собой линейный аморфно-кристаллический полимер белого цвета. Присутствие атома хлора нарушает симметрию звеньев макромолекулы, и в результате полимер становится полярным. Кристалличность полимера зависит от условий охлаждения. Максимальное количество кристаллической составляющей (до 80 %) выделяется при медленном охлаждении из расплава до 150 °С, а при быстром охлаждении степень кристалличности составляет 30-40 %. Фторопласт-3 с высокой степенью кристалличности имеет повышенные плотности, твердость. Полимер с низкой степенью кристалличности более пластичен. Фторопласт-3 имеет диапазон рабочих температур от -105 до 70 °С, а при эксплуатации изделий — от -195 до 4-125 °С. Нагрев выше 300 °С вызывает его деструкцию с образованием токсичного газообразного фтора. Фторопласт-3 по химической стойкости несколько уступает фторопласту-4, но все же его стойкость к действию органических растворителей кислот,  [c.275]

При нагружении твердого тела иооцесс разрушения включает обычно три стадии — инициирование трещины, ее стабильный рост при возрастающей или постоянной нагрузке и нестабильное распространение трещины. Однако не во всех материалах реализуются все три стадии разрушения. В хрупких материалах, всегда имеющих внутренние дефекты, такие как слабые границы зерен в некоторых керамических материалах или поверхностные царапины в минеральном стекле или хрупких полимерных стеклах, представляющие собой зародышевые (начальные) трещины, две первые стадии могут отсутствовать. В менее хрупких материалах, таких как аморфно-кристаллические полимеры или пластичные металлы, нестабильному распространению трещин предшествует их инициирование и стабильный рост по механизму образования микротрещин в полимерах или скопления дислокаций в металлах. Однако, если инициирование и стабильный рост трещин протекают ке всегда, то их нестабильное прорастание всегда является конечной стадией разрушения.  [c.52]

Хорошим модельным материалом для изучения разрушения на атомномолекулярном уровне являются ориентированные аморфно-кристаллические полимеры. Исследования, проведенные на таких объектах, обнаружили следующие закономерности [46]  [c.60]

Важнейшим фазовым переходом является температура плавления ( пл) кристаллической фазы. Значение аморфной фазы кристаллических полимеров всегда ниже 2 пл- Для большинства полимеров справедливо эмпирическое правило, согласно которому Tnn— /з пл [30]. С повышением степени кристалличности аморфной фазы Снижается [30—32]. Кроме Т кристаллической фазы в поли-N мерах возможны дополнительные фазовые переходы, обусловлен- У е изменением кристаллографических модификаций, а кроме шорфоа фазы — релаксационные переходы, связанные- с изме- рением гибкости макромолекул в кристаллах, переориентацией С концов звеньев или участков основной цени и т. д. [22—26]. Релаксационные явления в полимерах могут оказывать влияние на Я азовые переходы, а релаксационные переходы — на структурные / превращения. Это усложняет анализ темпергкгурных переходов т->в аморфно-кристаллических полимерах, ч 3 Для изучения фазовых переходов в полимерах используют классические методы, основанные на определении температурной зависимости термодинамических параметров — удельного объема (дилатометрия), удельной теплоемкости, или энтальпии (калориметрия, дифференциальный термический анализ). Эти же методы используют для изучения релаксационных переходов в полимерах [36—38]. На рис. 1.1 схематично показана температурная зависимость удельного объема F, состоящего из занятого Vq (прямая 1) и свободного V (кривые 2, а—г) объемов. Фазовые и релаксационные переходы в полимерах связаны с изменением только свободного объема. В полимерном монокристалле (кривая 2, г) при фазовом переходе Гпл наблюдается скачок в изменении свободного объема (аналогично плавлению низкомолекулярных кристаллов) [23—26]. В аморфном полимере (кривая 1, а) при релаксационном переходе наблюдается перелом на прямолинейном графике зависимости от температуры. Эмпирически установлено, доля  [c.17]


Одним из основных путей развития современного полимерного материаловедения является нахождение способов создания материалов, обладающих заданным, часто необычным, сочетанием свойств. Это достигается структурным модифицированием существующих широко распространенных полимеров. Для конструкционных термопластов важнейшей задачей является создание материалов, сочетающих технологичность термопластичных полимеров с достаточно высокой жесткостью, теплостойкостью, статической прочностью и устойчивостью к ударным нагрузкам. Такое сочетание свойств реализуется в высококристаллических полимерах II и III групп (см. гл. I), структура которых в температурном интервале < Топ представляет собой жесткую кристаллическую фазу с небольшим объемом эластичной аморфной фазы. Большинство аморфных или аморфно-кристаллических полимеров с низкой степенью кристалличности, эксплуатируемых в стеклообразном состоянии (полимеры I группы), обладает низкой или нестабильной устойчивостью к ударным нагрузкам, особенно при наличии концентраторов напряжений. Это в первую очередь относится к таким технически важным полимерам, как полистирол, полиметилметакрилат, поливинилхлорид. Повысить ударную прочность таких полимеров без резкого снижения других показателей удается диспергированием в них небольшого количества эластичных полимеров, образующих эластичную дисперсную фазу в жесткой стеклообразной матрице термопластичного полимера. Такие гетерофазные термопластичные полимерные материалы получили название эластифицированных (ударопрочных) термопластов.  [c.151]

Для всех полимеров значения близки к значениям этой величины, характерной для плотности закристаллизованных образцов. Обращает на себя внимание то. что независимо от способа полу чения коэффициент молекулярной упаювки аморфны. и аморфно-кристаллических полимеров в их монолитной части в первом приближении одинаков и бли юк к средней величине Arq,= 0,681, о чем говорилось выше. Для кристаллического образца величина Л" существенно выше.  [c.60]

НЫХ условиях в кристалличесюм полимере содержатся аморфные области, которые 1фи нагревании ведут себя подобно аморфному полимеру. При тер-момеханическом исследовании аморфно-кристаллических полимеров в интервале стеклования деформация %дет возрастать с дальнейшим образованием плато (рис.З 1). Однако плош,адка высокоэластичности не будет иметь такую же высоту, как и для чисто аморфного полимера того же строения. Она будет существенно ниже в зависимости от степени кристалличности. Во всяком случае, для аморфно-кристаллического полимера можно определять тем-перату ру стеклования и температуру текучести.  [c.108]

Фторопласт-4 является аморфно-кристаллическим полимером. Разрушение материала происходит при температуре выше 415°С. Он стоек к воздействию растворителей, кислот, ш,елочей, не смачивается водой. Применяют его для изготовления труб, вентилей, кранов, насосов, мембран, уплотнительных прокладок, манжет и др.  [c.29]

Полимеры делят на две подгруппы аморфные - эпоксидные смолы и оргстекло, и не столь широко известные кристаллические полимеры. Первые используются в качестве связующего. Кристаллические же полимеры имеют высокую удельную жесткость и прочность, что позволяет создавать на их основе специальное органоволокно.  [c.376]

Физические свойства. Фторопласт-4 предстаявляет собой рыхлый, волокнистый порошок белого цвета, легко комкующийся и спрессовывающийся при комнатной температуре в плотные таблетки. Фторопласт-4 является кристаллическим полимером, температура плавления его кристаллитов 4-327° С, температура стеклования аморфных участков (—120°С), он обладает высокой степенью кристалличности, даже процесс закалки (быстрого охлаждения) не может препятствовать образованию кристаллитов. Согласно исследованиям Буна и Ховэллса, Пирса, Кларка и др., фторопласт-4 обладает тремя различными структурами.  [c.10]

Так как многократно повторяющимся деформациям лучше сопротивляются материалы с низким модулем упругости и достаточной эластичностью, вязкие кристаллические полимеры обладают большей стойкостью к износу, чем аморфные полимеры в стеклообразном состоянии. После перехода аморфных полимеров в состояние каучукообразной эластичности их модуль упругости, правда, понижается, но одновременно понижается и механическая прочность. Улучшение стойкости к абразивному износу аморфных полимеров может быть достигнуто понижением переходной температуры с помощью пластификаторов, которые (помимо снижения модуля упругости) обеспечивают при температурах обычного применения материала и достаточную вязкость.  [c.86]

Ряд термопласти.чных полимеров обладает способностью к кристаллизации (типичными кристаллизующимися термопластами являются, например, широко распространенный полиэтилен и политетрафторэтилен, иначе фторопласт), которая, однако, никогда не распространяется на весь объем материала. В нем наряду с кристаллической всегда сохраняется и некоторая стекловидная аморфная фаза. Степень кристалличности зависит не только от вида материала, но и от технологии его изготовления. Кристаллические структуры возникают вследствие объединения групп цепных молекул (обычно лишь на отдельных участках их длины), причем процессу кристаллизации способствует ориентация молекул под действием внешних растягивающих усилий. Свойства частично кристаллических полимеров со стекловидной аморфной фазой в сравнении с полностью аморфными материалами более стабильны по отношению к изменениям температуры. Частично кристаллические полимеры имеют при этом определенную температуру плавления, которая для аморфных полимеров не существует.  [c.33]

Свойства полимеров определяются не только строением и составом макромолекул, но их взаимным расположением в элементарном объеме. Установлено [Л. 22], что значительная асимметрия макромолекул способствует не только их гибкости, но и стремлению к образованию устойчивых надмолекулярных структур. Прямыми электронно-микроско-пическими исследованиями структур систем из растворов полимеров показано i[JI. 23], что аморфные полимеры с гибкими и жесткими цепями состоят из надмолекулярных структур типа пачек, глобул, фибрилл, лент и квазикристаллов. Еще более четкую форму приобретают надмолекулярные образования в кристаллических полимерах. Макромолекулы образуют параллельно расположенные пучки фибрилл, кристаллические лепестки, сферолиты, а иногда и отдельные монокристаллы. Характер образующихся надмолекулярных структур определяется гибкостью макромолекул и внешними условиями. Свойства полимеров, в том числе и теплофизические, в значительной степени зависят от того, какие структурные элементы (звенья или цепи) являются определяющими в процессе формирования упорядоченного состояния.  [c.31]

В настоящее время установлено, что теплопроводность полимеров в общем меньше теплопроводности низкомолекулярных твердых тел. Абсолютная величина теплофизических характеристик у аморфных полимеров всегда ниже, чем у кристаллических. Природу этого явления объясняют [Л. 26] тем, что у кристаллических полимеров, как структур с дальним порядком, механизм передачи колебаний более упорядочен и интенсивен по сравнению с неупорядоченной системой связи макромолекул аморфных полимеров. В то же время в области низких температур порядка 10— 100 К теплоемкость аморфных и кристаллических полимеров с одной и той же химической природой практически одинакова [Л. 41]. Такой температурный характер теплоемкости объясняется тем, что в указанной области температур колебательные движения цепей имеют одинаковую амплитуду в кристаллическом и аморфном состоянии. Инертность воздействия неупорядоченности структуры на процесс теплопереноса в области низких температур характерна и для низкомолекулярных соединений [Л. 35]. При повышении температуры возникают ангармоничные колебания значительной амплитуды с участием самых крупных структурных образований, которые имеют различную природу для аморфных и кристаллических полимеров. Температурная зависимость теплофизических характеристик аморфных полимеров в большинстве случаев носит немонотонный характер с экстремальной точкой в области температуры стеклования 1[Л. 44].  [c.33]


На теплофизические свойства и их зависимость от температуры существенное влияние оказывает характер структурных образований на молекулярном и надмолекулярном уровнях. По этой причине, в частности, теплопроводность кристаллических полимеров с увеличением температуры может как повышаться, так и уменьшаться Л. 26, 27, 36, 37], или иметь точку перегиба в области перехода Л. 26, 40, 46], В принципе характер температурной кривой теплопроводности кристаллических цолимеров, как и для низкомолекулярных веществ, определяется количественным соотношением кристаллических и аморфных структурных элементов.  [c.34]

Механизм взаимодейстаия полимера с наполнителем для кристаллизирующихся и аморфных полимеров имеет различный характер. Вводимые в кристаллический полимер твердые частицы могут располагаться в центре таких надмолекулярных образований, как сферолиты, служить основой для роста конгломератов из сферолигов или же вытесняться в области между структурными элементами. При наполнении аморфных полимеров с поверхностью наполнителя взаимодействуют как отдельные макромолекулы, так и надмолекулярные структуры типа пачек и глобул. Такой характер взаимодействия наполнителя с аморфным полимером ведет к замораживанию в последнем находящихся в состоянии метастабильного равновесия структур.  [c.74]

Полизтидентерефталат — сложный полиэфир, в СССР выпускается под названием лавсан, за рубежом — майлар, терилен. Полиэтилентерефталат является кристаллическим полимером при быстром охлаждении расплава можно получать аморфный поли-  [c.457]

Поликарбонат — сложный полиэфир угольной кислоты выпускается под названием дифлон. Это кристаллический полимер, которому при плавлении и последующем охлаждении можно придать аморфную структуру. Такой материал становится стеклообразным и прозрачным. Свойства поликарбонатов своеобразны — им присущи гибкость и одновременно прочность и жесткость. По прочности при разрыве материал близок к винипласту и отличается высокой ударной вязкостью, он нехладотекуч. При длительном нагреве, вплоть до температуры размягчения, образцы сохраняют свои размеры и остаются эластичными при низких температурах.  [c.458]

Рентгеновский структурный анализ с 1916 г. начал приме-liflTb fl для определения межплоскостных расстояний и параметров элементарных ячеек моно- и поликристаллических веществ. В 50-х годах XX в. начали бурно развиваться методы этого анализа с использованием ЭВМ в технике эксперимента и при обработке рентгеновских дифракционных картин. Результаты исследований практически для всех кристаллических веществ, а также кристаллических полимеров, аморфных тел и жидкостей щироко представлены как в государственных, так и в международных стандартных справочных источниках.  [c.50]


Смотреть страницы где упоминается термин Аморфно-кристаллические полимер : [c.228]    [c.303]    [c.18]    [c.108]    [c.225]    [c.6]    [c.186]    [c.18]    [c.64]   
Термопласты конструкционного назначения (1975) -- [ c.18 ]



ПОИСК



Аморфное юло

Кристаллические

Кристаллическое и аморфное состояния полимеров

Кристаллическое и аморфное строение полимеров

Полимерия

Полимеры

Полимеры аморфные

Полимеры кристаллические



© 2025 Mash-xxl.info Реклама на сайте