Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб стержня с кручением

СЛОЖНЫЙ ИЗГИБ СТЕРЖНЯ С КРУЧЕНИЕМ И РАСТЯЖЕНИЕМ-СЖАТИЕМ  [c.209]

По политическим соображениям высшие учебные заведения России были закрыты для учебных занятий в 1905 г. и большей части 1906 г., но деятельность кружка не прекращалась, она даже расширялась, так как у преподавателей было больше свободного времени для научной работы. Делались не только обзоры текущей технической литературы, но и доклады о собственных научных работах. Помню, мне пришлось доложить об исследовании по кручению двутавровых балок, в котором впервые было получено уравнение, нашедшее впоследствии широкое применение в исследованиях продольного изгиба, связанного с кручением в случае сжатия тонкостенных стержней. Эти теоретические результаты были подтверждены опытами, произведенными в механической лаборатории. Докладывал также я о моих работах по устойчивости изгиба двутавровых балок и об устойчивости сжатых пластинок ). Опять же теоретические результаты подтверждались опытами. В то время эти работы, казалось, были скорее академического характера, так как явления упругой неустойчивости возможны только в случае тонких пласти-  [c.682]


Прежде всего следует иметь в виду, что при изгибе стержня с поперечным сечением, имеющим две оси симметрии, кручение не возникает, если линия действия равнодействующей поперечной силы Ох проходит через центр тяжести (рис. 7.19(а)).  [c.180]

Таким образом, при совместном действии изгиба с кручением стержни круглого сечения рассчитывают на изгиб от приведенного момента Мпр.  [c.347]

Какие точки являются опасными при изгибе с кручением стержня круглого сечения  [c.79]

Как записывается условие прочности при изгибе с кручением круглого стержня  [c.79]

Как выполняется расчет на прочность стержня прямоугольного сечения, работающего на изгиб с кручением  [c.80]

Перейдем теперь к задаче об изгибе стержня концевой силой. Будем предполагать, что система заданных внешних нагрузок на 5i эквивалентна силе Р Р ву, приложенной в точке пересечения оси Охз с 5i. Задачи с другой точкой приложения силы Р сводятся, очевидно, к поставленной задаче и к уже решенной задаче кручения с моментом M3 = Pia, где с —расстояние от точки приложения силы Р до оси Ох .  [c.70]

Существует два типа деформаций стержней, могущих сопровождаться большим смещением отдельных частей стержня. Одним из них является изгиб стержня, а вторым — его кручение. С рассмотрения этого второго случая мы и начнем.  [c.86]

Аналогично тому, что мы имели в случае изгиба пластинок и кручения стержней, и при изгибе тонких стержней внешние силы, действующие на боковую поверхность стержня, малы по сравнению с возникающими внутри стержня напряжениями, и при определении граничных условий на этой поверхности их  [c.93]

Важным случаем изгиба стержней является слабый изгиб, при котором на всем протяжении стержня отклонение его от первоначального положения мало по сравнению с длиной стержня. В этом случае кручение можно считать отсутствующим, так что можно положить Qj = О и из (18,4) имеем просто  [c.101]

Уже в начале предыдущего параграфа было отмечено, что сильный изгиб стержня произвольного сечения сопровождается, вообще говоря, одновременным его кручением, даже если к стержню не прилагается никаких внешних крутящих моментов. Исключением является изгиб стержня в его главных плоскостях. При таком изгибе кручение не возникает. У стержня кругового сечения никакой изгиб не сопровождается кручением (если, конечно, нет внешних крутящих моментов). В этом можно убедиться следующим образом. Кручение определяется компонентой Qj = (Qt) вектора й. Вычислим его производную по длине стержня. Для этого пишем, замечая, что = М /С  [c.105]

Решение. Ввиду большой величины жесткости по сравнению с /f (и с жесткостью на кручение С) 1) неустойчивость по отношению к сильному боковому изгибу возникает в то время, когда изгиб в плоскости х, г остается еще слабым. Для определения момента наступления неустойчивости надо составить уравнения слабого бокового изгиба стержня/ сохраняя в них члены, пропорциональные произведениям действующей в плоскости х, г силы / на малые смещения. Поскольку сосредоточенная сила приложена лишь к свободному концу стержня, то вдоль всей его длины F = f, а на свободном конце (г = I) момент М = 0 по формуле (19,6) находим компоненты момента относительно закрепленной системы координат х, у, г  [c.123]


Отдельная глава посвящена расчету элементов конструкций с учетом ползучести расширен по сравнению с другими сборниками задач состав задач по вопросам усталостной прочности включен параграф, посвященный расчету тонкостенных стержней замкнутого профиля на стесненное кручение. В отдельные параграфы выделены вопросы нелинейного деформирования элементов конструкций. В главе Устойчивость и продольно-поперечный изгиб стержней помещены задачи, которые помогут студентам приобрести не только навыки расчетов на устойчивость, но и уяснить понятие критического состояния системы и применяемого в исследовании устойчивости метода Эйлера. Креме того, решение этих задач подготовит студентов к более успешному освоению курса устойчивости сооружений.  [c.3]

Знаки касательных напряжений при изгибе и кручении указаны в соответствии с правилами, принятыми в соответствующих разделах курса сопротивления материалов. Знаки результирующих касательных напряжений соответствуют правилу, принятому для теории изгиба стержней. В сечении в эффектом стеснения можно пренебречь. Тогда = аз = —4,8 МПа а = о = 4,8 МПа т,, = 1,3 + 0,62 = 1,92 МПа = 1,3 — 0,62 = 0,68 МПа.  [c.246]

При одновременной деформации изгиба с кручением внутренние усилия в поперечном сечении стержня приводятся к пяти компонентам крутящему моменту Л1 = относительно геометрической оси стержня X (рис. 131), изгибающим моментам Му и относительно главных центральных осей инерции сечения у а z и поперечным силам Qy и Q , направленным по этим осям.  [c.227]

Определить угол ф поворота планки под влиянием приложенного в ее плоскости момента Mq, если расстояния между осями стержней а, Ь и с жесткости стержней на кручение j, С2, С3 и С4, а их жесткости на изгиб Si, S3 и В .  [c.232]

Нередко имеем комбинацию изгиба с кручением, а также с растяжением или сжатием стержня.  [c.18]

Перейдем теперь к задаче изгиба стержня и, как ранее, будем рассматривать стержень достаточно большой длины. Пусть ось 2 ориентирована уже не произвольно, а проходит через центр тяжести основания, оси х а у направим пока произвольно. В дальнейшем эти оси выбираем совпадающими с главными осями. Как и в задаче кручения, будем предполагать, что боковая поверхность свободна от нагрузок, т. е. выполняются условия (3.1). Полагаем также, что на основаниях внешние напряжения статически эквивалентны моменту М (ось которого параллельна оси у (рис. 16)). Поставленная таким образом задача называется задачей изгиба стержня моментом в постановке Сен-Венана (здесь по-прежнему речь идет лишь об интегральном удовлетворении краевых условий на основаниях). В данном случае удобно исходить из первоначального представления напряженного состояния, а потом уже определять смещения.  [c.270]

Предположение о том, что поперечное сечение стержня при кручении остается плоским, вполне аналогично такому же предположению в элементарной теории изгиба балок, которая была изложена в третьей главе. Но применительно к задачам изгиба это предположение выполняется во всех случаях с практически достаточной точностью, оно позволяет определить основные при изгибе напряжения — нормальные к плоскости сечения. Некоторое искривление поперечных сечений может происходить за счет касательных напряжений, но эти напряжения, как было показано, относительно невелики. Для кручения, когда возникают именно касательные напряжения, поперечные сечения действительно остаются плоскими только тогда, когда сечение ограничено концентрическими окружностями, как это было рассмотрено в 9.6. Чтобы построить решения в общем случае, добавим к напряженному состоянию (9.6.1) напряженное состояние, соответствующее антиплоской деформации по формулам (9.1.1). Получим  [c.292]

Приведение параметров упругости звеньев (связей). Приведение параметров упругости необходимо для составления упрощенных динамических моделей машин и приведения их к одной оси. Упругость связи характеризуют параметром жесткости (жесткостью). Пара.метром жесткости называют силу или момент силы, вызывающие перемещение, равное единице (длины или угла). Например, жесткость стержня при деформациях растяжения-сжатия с = /"/Лх, при кручении с = М/Дф и при изгибе звеньев с = Р// (рис. 5.6, а-в). Указанные параметры жесткости могут быть получены из известных формул, отображающих закон Гука при различных деформациях  [c.100]


В равенствах (5.61) —(5.63) приняты следующие обозначения 5 — площадь поперечного сечения стержня I — осевой момент инерции поперечного сечения стержня /р — полярный момент инерции поперечного сечения стержня М — момент сил кручения стержня Р — сила растяжения сжатия и изгиба Е — модуль нормальной упругости материала деформируемых стержней С — модуль касательной упругости материала деформируемых элементов Дф — угол закручивания звена / — прогиб конца балки X и I — длина стержней при отсутствии деформации.  [c.101]

Изгиб стержня за пределом упругости 206 поперечный 204 прямой плоский 192 с кручением 223 упругий 192 Изнашивание 260, 265 абразивное 266 коррозионно-механическое 267  [c.564]

Задача определения модулей межслойного сдвига окончательно не решена до настоящего времени. Сложность ее решения обусловлена тем, что межслойные модули сдвига, как правило, определяются на стержнях, где трудно реализовать условия чистого сдвига. Обычно для этой цели используется изгиб коротких балок или кручение стержней с различным отношением параметров их поперечного сечения. Первый способ прост в реализации, но не позволяет получать достоверных сведений вследствие сложного напряженного состояния в образце при малом отношении //Л (см. с. 41). Приближенные зависимости, которые исполь-  [c.45]

Для экспериментального построения поверхности прочности необходимо провести эксперименты на растяжение, сжатие, чистый сдвиг и комбинированное нагружение. Содержательный обзор и экспериментальное сравнение многочисленных методик, предложенных для испытания композитов, в том числе испытаний на растяжение, сжатие, изгиб и кручение стержней с анализом геометрии образца и конфигурации захватов, приведены в работе Лено [29].  [c.462]

Обращает на себя внимание наличие дифференциальных связей между усилиями и М ,, а также между усилиями Qy и Мх- Никаких других связей между усилиями нет. Это обусловливает независимость таких деформаций стержня с прямолинейной сью, как изгиб в плоскости Оуг, изгиб в плоскости Охг, растяжение (сжатие) вдоль оси 2 и кручение относительно оси z. Наличие дифференциальной связи между и Му Qy и М ) указывает на то, что при изгибе  [c.58]

Даже для тел, имеющих форму стержня, средствами сопротивления материалов в ряде случаев решение получить не удается, например, в задачах о кручении стержней некруглого поперечного сечения, определении компонентов касательных напряжений при изгибе стержня, направленных перпендикулярно к плоскости изгиба и др. Когда решение может быть получено и методами сопротивления материалов, но приближенно, с использованием гипотез, теория упругости позволяет произвести оценку точности этого решения.  [c.610]

Жесткость при кручении стержня с поперечным сечением в виде половины кольца 01 находится с учетом приведенной выше формулы для 1 01 = = 0,0000598596/ . Таким образом, погонный угол закручивания, возникающего вследствие того, что сила Р приложена не в центре изгиба, а в центре тяжести, равен  [c.346]

Задаваясь некоторыми свойствами смещений, вытекаюпщми из умозрительного рассмотрения задачи, и предполагая отсутствие продольных составляющих касательных напряжений на боковых поверхностях стержней, Сен-Венан показал непротиворечивость принятых предположений и свел задачу о кручении к решению уравнения Лапласа для продольного смещения частиц первоначально плоского поперечного сечения стержня, а задачу об изгибе — к решению уравнения Пуассона для некоторой вспомогательной 56 функции (при этом распределение напряжений на торцах стержня находится из решения). Сен-Венан подробно разобрал кручение и изгиб стержней с эллипсоидальным и прямоугольным поперечным сечением, а также множество других частных задач. Все его изложение проникнуто чисто инженерным духом — стремлением довести решение до числа и графика, изучить наиболее опасные, с точки зрения прочности, области сечения и дать совершенно ясные примеры расчетов.  [c.56]

I ти), к которым должны быть приложены внешние силы, чтобы вызвать изгиб стержня без кручения. Если упругая ось не совпадает с линией центров тяжес-  [c.271]

В первом разделе представлены основные формулы, относящиеся к расчетам как при простых видах деформации (растяжение и сжатие, кручение, изгиб), так и при сложном сопротивлении (косой изгиб, вкецентренное продольное нагружение, изгиб с кручением) в условиях статического и динамического нагружения расчетам на устойчивость, расчетам статически неопределимых систем, кривых стержней, тонкостенных и толстостенных сосудов.  [c.3]

Положение центра изгиба поперечного сечения определяется т0Л1аК0 его формой, В то же время положение центра кручения (сы. стр. 312) 1ависит от способа закрепления стержня. С помощью соответствующего выбора способа закрепления можно совместить ось закручивания с осью, на которой лежат центры изгиба. Можно показать, что это происходит тогда, когда стержень  [c.377]

Для завершения вычислений надо, по крайней мере, знать, в каком соотношении находится жесткость на изгиб EI с жесткостью на кручение G/. Это зависит в первую очередь от формы сечения. Так, для стержня квадратного сечения аХа момент инерции относительно центральной оси равен aV12, а значение /к=0,141а (это значение сообщалось вам на лекции о кручении бруса некруглого сечения). Еслипринять, что <3 = 0,4 , то отношение //G/ = 1,30. В таком случае искомое перемещение можно записать в виде  [c.131]

Крутящие моменты в стержнях с депланирующим, например двутавровым, профилем при G7 О могут быть восприняты поперечными силами в плоскостях полок. Одновременна появляются и нормальные напряжения изгиба полок, что можно объяснить также несвободной (стесненной) депланацией поперечных сечений. Такое восприятие крутящих моментов называют стесненным или изгибным кручением. Напряжения типа стесненного или изгибного кручения возникают от действия как крутящих моментов, так и от продольных сил и пар, поскольку они при некоторых условиях вызывают деформацию кручения.  [c.132]


При разработке основ выбора геометрических элементов орнамента авторами принято, что размеры геометрических элементов поверхности существенно малы по сравнению с конструктивными размерами детали. Известно, что общая деформация литых деталей включает упругую и остаточную деформацию. Упругая деформация обусловлена перемещением и искажением (депланацией) сечения элемента в процессе обработки детали. При прочих равных условиях с увеличением толщины и площади сечения стенки доля упругой деформации, в том числе депланацин, уменьшается. Поэтому в толстостенных литых деталях этот вид деформации практически не учитывается. Однако при уменьшении толщины и площади сечения стенки и увеличении количества сочленений различных геометрических элементов доля упругой деформации, в особенности депланации, резко возрастает. Метод литья в отличие от других методов получения заготовок имеет значительное преимущество— возможность варьировать процессом кристаллизации и получать на поверхности рациональные геометрические элементы, создавая наиболее благоприятное сочетание свойств материалов и геометрических особенностей отливок. При уменьшении поперечного сечения бруса или пластины уменьшается его статический момент, а с ним и жесткость конструкции при изгибе и кручении. Поэтому геометрические элементы в виде тонких стержней с гладкой поверхностью рационально применять для литых деталей, работающих в условиях растягивающих и сжимающих напряжений. Геометрический элемент в виде тонкостенного бруса открытого профиля, обладающего малой жесткостью при кручеиии, целесообразно применять для литых деталей, воспринимающих нагружение изгибом, растяжением и сжатием. Геометрические элементы могут иметь и более сложную конфигурацию, обусловливающую анизотропию свойств в различных направлениях.  [c.19]


Смотреть страницы где упоминается термин Изгиб стержня с кручением : [c.162]    [c.286]    [c.133]    [c.223]    [c.345]    [c.169]    [c.169]    [c.163]    [c.175]    [c.185]    [c.31]   
Прикладная механика (1985) -- [ c.223 ]



ПОИСК



Влияние жесткости стержня при чистом кручении на величину нормальных напряжений при изгибе и кручения

Главные оси кручения и изгиба стержня

Изгиб и кручение коленчатого стержня

Изгиб и кручение призматических стержней

Изгиб и кручение стержней прямолинейных продольный

Изгиб и кручение тонкостенных стержней

Изгиб и кручение тонкостенных стержней открытого профиля

Изгиб и кручение тонкостенных стержней с открытым контуром сечения

Изгиб с кручением

Изгиб стержня

Изгиб стержня стержня

Кручение стержней

Кручение, растяжение и изгиб призматических стержней

Напряжения в тонкостенных стержнях при стесненном кручении и при совместном действии изгиба и кручения

Напряжения касательные 5 — Свойство изгиба и стесненного кручения тонкостенных стержней

ОБЩАЯ ТЕОРИЯ ИЗГИБ И КРУЧЕНИЕ СТЕРЖНЕЙ ПЛОСКАЯ ЗАДАЧА. ТЕЛА ВРАЩЕНИЯ НАПРЯЖЕНИЯ Внешние силы

Одновременное действие изгиба и кручения круглого стержня

Одномерные задачи осевое нагружение, изгиб и кручение призматического стержня

Определение запаса прочности стержня при совместном действии переменных растяжения (сжатия), изгиба и кручения

Определение напряжений и перемещений в тонкостенном стержне замкнутого профиля при растяжении, изгибе и кручении

Оса главные — деформации, 48 — симметрии, 161, 168 главные — кручения и изгиба стержня, 399 метод по:вижных

Основы расчёта тонкостенных стержней на кручение и изгиб

Основы технической теории расчета тонкостенных стержней.. — Понятие о свободном и стесненном кручении стержней. . — Изгиб стержня несимметричного сечения. Понятияе о центре изгиба

Потеря устойчивости тонкостенных стержней открытого профиля от одновременного действия изгиба и кручения

Поток касательных напряжений в балках при изгибе стержнях при кручени

Применение функции напряжений к исследованию изгиба и кручения призматических стержней

Простые типы напряженных состояний тонкостенные круглые трубы под действием внутреннего давления, кручение тонкостенных труб и круглых валов, чистый изгиб цилиндрических стержней

Растяжение, сжатие, изгиб и кручение тонкостенных стержней с замкнутым контуром сечения

Расчеты на прочность прямоосных стержней при осевом растяжении (сжатии), кручении и плоском поперечном изгибе

Решение задачи о кручении и поперечном изгибе призматических стержней

Сложный изгиб стержня с кручением и растяжением-сжатием

Сложный изгиб стержня с кручением и растяжениемсжатием

Совместно происходящие пространственный изгиб и кручение круглого цилиндрического стержня

Совместный изгиб и кручение стержней переменного сечения

Совместный изгиб и кручение тонкостенных стержней открытого профиля

Сочетание изгиба и кручения призматического стержня

Стержни Изгиб, кручение и растяжение

Стержни тонкостенные Центры изгиба, кручения, жесткости

Стесненное кручение и изгиб тонкостенных стержней

ЭПЮРЫ ИЗГИБАЮЩИХ МОМЕНТОВ ЯСИНСКОГО единичной депланации при свободном кручении тонкостенных стержней 133 — Построение — Приме



© 2025 Mash-xxl.info Реклама на сайте