Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрические измерения режимы работы

Экспериментальная аппаратура, применяемая для измерения давлений и расходов воздуха при неустановившихся режимах работы элементов. Изучение переходных процессов в элементах пневмоники методом киносъемки визуализированной картины течений. Для измерения быстро меняющихся по времени давлений используются при испытании элементов пневмоники пневмо-электрические датчики. Выходные сигналы датчика, отражающие изменение давления, передаются через усилители к осциллографической установке. Элементом, воспринимающим в датчике изменение давления, является обычно мембрана. Применяются тензометрические датчики сопротивления [4, 15, 17, 23], а также емкостные и индуктивные датчики [4, 11 ].  [c.430]


Среди операций III, сводящихся к применению зондирующих (испытательных) физических или химических воздействий и манипуляциям с органами управления лабораторным анализатором (установка нуля измерителя, диапазона и чувствительности измерения, манипулирование переключателями рода и режима работы, выключателями, запускающими различные вспомогательные механизмы и т. п.), наиболее ответственным является собственно измерение или сопоставление измеряемой величине какого-то символа, числа, отрезка линии или геометрической фигуры с целью сравнения измеряемой величины с ее единичным значением. Внутри лабораторного прибора при этом происходит ряд преобразований сигнала с помощью различных элементов, объединенных посредством электрических, пневматических, гидравлических и кинематических связей, вплоть до выдачи его в удобной для оператора форме.  [c.23]

Современные турбины оснащены развитой системой защит, предупреждающих аварии при отклонении от нормы режима работы какой-либо из систем. Действие этих защит сопровождается световой и звуковой сигнализацией. Для выведения оборудования в устойчивое состояние (останов, новый уровень нагрузок, холостой ход) в момент срабатывания защит производятся переключения и отключения вспомогательного оборудования, арматуры, работает большое число средств измерения, авторегулирования, релейных устройств. Правильность взаимодействия всех этих узлов и устройств особенно тщательно должно опробоваться при пуске турбины после длительных простоев, когда вероятность отказов возрастает вследствие возможных ошибок ремонтного к наладочного персонала, внесения ка-ких-либо изменений, в том числе и непреднамеренных, в электрические И гидравлические схемы, вследствие разрегулировок от температурных и вибрационных воздействий.  [c.126]

При наладке лифтов проводят электрические и другие измерения, например силы тока, напряжения, ускорения и замедления кабины при различных режимах работы лифта, уровня громкости, шума, возникающего при работе лифта, усилий разжатия створок дверей и т. п.  [c.140]

В аппаратуре взвешивания применен электронно-тензометрический метод измерения массы груза. Тензодатчики преобразуют действие груза в электрический сигнал. Сигналы от тензодатчиков поступают в указательные приборы, которые измеряют величину сигнала и выдают информацию в схемы дозирования и управления. Схемой предусматриваются следующие режимы работы автоматический, полуавтоматический, дистанционный, ручной (наладочный). Управление осуществляется с пульта. Качественный и количественный состав подач, а также нх число на одну плавку программируется на программном устройстве.  [c.201]


Отметим, что наиболее быстрое возвращение системы к положению равновесия происходит в критическом режиме, а в колебательном и апериодическом режимах этот процесс длится дольше. Поэтому, например, гальванометры — приборы для электрических измерений — работают обычно в режиме, близком к критическому, когда процесс установления их показаний, то есть смещения s рамки к устойчивому отклонению имеет наименьшую длительность (см. рис. 1.17).  [c.24]

Рассматриваемые ниже электрические аналоговые измерительные преобразователи и дистанционные передачи широко используются для централизации управления и контроля за ходом технологического процесса, режимом работы агрегатов (установок) в энергетике, а также в других отраслях промышленности. Описываемые ниже средства измерений применяют для выработки и передачи сигнала измерительной информации по линиям связи, как правило, на небольшие расстояния (0,3—0,8 км).  [c.299]

АРМ в составе лаборатории реализовано по агрегатному приборно-модульному принципу на основе стандартного интерфейса и функционирует в режимах программного и ручного управления. В программном режиме обеспечивается управление измерительными приборами, измерительными цепями и режимами работы объекта контроля (ОК) по заранее записанной в ПЭВМ программе. В ручном режиме обеспечивается управление приборами и ОК дистанционными командами, устанавливаемыми вручную на устройстве самоконтроля. Для повышения оперативности проведения контроля в составе АРМ имеются сменные блоки сопряжения ОК с измерительными каналами, которые позволяют осуществлять программно-дистанционное управление режимами работы ОК и переключение измерительных цепей, электрической проницаемости е методами толщинометрии с точностью не хуже 0,1 мм. Точность измерения толщины согласно экспериментальным данным (рис. 4.8) не хуже 0,5 мм ддя длины волны генератора = 8,6 см. Согласно теории электродинамического подобия погрешность А Ь = 0,01Я,J .  [c.180]

Трудность осуществления пленочного режима кипения при электрическом обогреве состоит в резком повышении температуры поверхности при переходе от ядерного кипения, что вызывает пережог рабочего элемента, если для его изготовления не применяются специальные тугоплавкие материалы. После осуш,ествления указанных режимов кипения тем или иным способом опыты проводятся в обратном направлении. Для этого производится постепенное снижение теплового потока до тех пор, пока не произойдет переход пленочного режима кипения в ядерный. Величина теплового потока, при котором имеет место обратный переход пленочного режима в ядерный, принимается за вторую плотность критического теплового потока. При этом измерения ведутся теми же методами и средствами, какие применяются для исследования других режимов кипения. Трудности осуществления пленочного режима кипения до некоторой степени обходятся в работе [Л. 7]. В ней для получения пленочного режима применяются относительно невысокие значения тепловых потоков и температур стенки. Кроме того, не требуется проходить первый кризис кипения. С этой целью опытная труба 2  [c.247]

Приборы для измерения скоростей потока жидкости в ГДТ при работе на переходных и неустановившихся режимах должны удовлетворять следующим требованиям наличию электрического выходного сигнала достаточными быстродействием и точностью малыми размерами и высокой прочностью датчиков доступностью и простотой наладки.  [c.94]

При измерениях избыточного фотонного шума необходимо минимизировать влияние плазменных шумов. Следует использовать экспериментальную установку, описанную в п. 1, а, причем спектр шумов измеряется в то время, когда электрическая схема возбуждения лазера оптимизирована с точки зрения подавления флуктуаций газового разряда. Необходимо работать при меньших значениях тока разряда. Последовательно с разрядной трубкой (со стороны незаземленного провода) надо включить большое сопротивление (< 100 ком). Для уменьшения шумов полезно также установить вблизи анода разрядной трубки сильный постоянный магнит. После того как добились работы лазера в режиме со сравнительно низким уровнем шумов, можно приступать к измерениям. Путем автоматического регулирования, например, положения зеркала надо стабилизировать одночастотное выходное излучение лазера по отношению к длительным дрейфам частоты.  [c.468]


Сельсины используются также для измерения рассогласования угловых положений роторов сельсина-датчика н сельсина-приемника. Сельсин-датчик и сельсин-приемник соединены электрически только со стороны статора. Сигналом (мерой) степени углового рассогласонп-ния положений двух роторов сельсинов является напряжение обмотки ротора сельсина-приемника сельсин-приемник работает в этом случае по принципу олно-фазного трансформатора. Совместная работа сельсина-датчика и сельсин -при-емника для целей электрического измерения рассогласования угловых положений их роторов называется трансформаторным режимом сельсинов  [c.491]

Кратко охарактеризуем наиболее распространенные влияющие факторы. Температура является смешанно-действующим фактором. Однако ее воздействие на датчики с генераторными МЭП носит главным образом мультипликативный характер (аддитивно проявляются только перепады температуры). Деформация объекта измерения также относится к смешанным факторам, хотя ее аддитивное действие обычно преобладает. Давление окружающей среды действует аналогичным образом. Вибрация обычно считается действующей аддитивно, если она не выводит МЭП из нормального режима работы. Медленное ускорение влияет аддитивно, пока суммарный сигнал датчика не превышает значения, соответствующего верхнему пределу измерения. Магнитное поле оказывает мультипликативное действие только на те датчики, чувствительность которых в значительной степени зависит от него, например с гальва-номагнитным МЭП, в остальных случаях его воздействие аддитивно. Электрическое поле аналогично магнитному по характеру влияния. Акустическое давление действует аддитивно. Проникающая радиация может считаться смешанным, но преимущественно мультипликативным фактором. Время также оказывает мультипликативное воздействие, если продолжительность измерения значительно меньше периода проявления старения.  [c.217]

В связи с вводом в эксплуатацию мощных многоанодных с обожженными анодами электролизеров встал-вопрос об изучении взаимовлияния распределения токовой нагрузки по анодам и технологического состояния процесса электролиза алюминия. Работа была выполнена на ТадАЗе Казахским политехническим институтом совместно с ВАМИ. Исследования проводили на промышленных электролизерах на силу тока 162 и 167 кА с помощью 30-канальной измерительной системы К 484/2 с выводом информации на перфоратор. Измерялось падение напряжения на фиксирован ном участке анодной штанги, которое соответствует силе тока, протекающего по данному аноду. Сила тока серии и электрическое напряжение электролизера замерялись через гальванические разделители Е826 для защиты системы от попадания потенциала серии. Дискретность опрашивания входных сигналов составляла 0,1 с, и общее время измерения параметров одного электролизера -не превышало 2,5 с. Таким образом, можно считать измерение выполненным при постоянных значениях силы тока серии и рабочего напряжения ванны. Периодичность опроса определяли в зависимости от поставленной задачи. При исследовании нормального режима работы регистрацию производили через каждые 10 мин, при праведении технологических операций — непрерывно. На печать выводились единичные измерения, а также средние за определенный период времени (час, смена, сутки). Полученные на перфолентах результаты обрабатывали по. специальной программе на ЭВМ СМ-2. Для визуального контроля и изучения динамических характеристик отдельных анодов применяли самопишущие приборы типа Н-338 и КСП. Для количественной оценки равномерности токораспределения по анодам данного электролизера  [c.35]

Измерение силы тока в высокочастотных электрических цепях затруднено из-за токов утечек через паразитные емкости и изменений в режиме работы электроцепей, связанных с собствеиной индуктивиостью амперметра. На рис. 38 показаны два варианта включения амперметра в схему генератор - нагрузка .  [c.121]

В случае применения закрытой системы сбора нефти и газа для измерения добычи в состав установки должен быть включен дебитомер. Такая установка располагается обычно в непосредственной близости от скважины и имеет минимальную протяженность трубопроводов, что позволяет сохранять положительную температуру рабочей жидкости даже в самые сильные морозы. Для поддержания заданного режима работы установка должна быть снабжена автоматическим регулятором. Кроме того, она обязательно снабжается гидравлической и электрической защитой, монтируемой в станции управления.  [c.156]

Шум, создаваемый электрической машиной, в известной мере зависит от режима ее работы, поэтому измерение шума желательно производить в номинальном режиме. Однако в тех случаях, когда испытуемую машину для создания номинального режима работы приходится сочленять со вспомогательной нагрузочной или приводной машиной, возникают серьезные трудности, связанные с необходимостью устранения искажений, вносимых этой машиной в результате измерений шума. Такие искажения (за счет шумовых и вибрационных помех, звукоотражения, влияния присоединенной массы и т. д.) могут быть настолько значительными, что пренебрегать ими нельзя, а учесть и внести соответствующие поправки в большинстве случаев невозможно.  [c.169]

А.Н. Стрекаловым проведены обширные измерения тока J в аэродромных и полетных условиях практически на всех типах самолетов гражданской авиации СССР в 1970-80-х гг. и на основных типах современных военных самолетов. Измерения проводились на всех режимах работы двигателей от малого газа до форсажа в различных метеоусловиях. Ток выноса, как правило, является положительным, монотонно возрастает с ростом приведенного числа оборотов компрессора и падает до нуля на режиме форсажа. Быстрые переходные режимы (например, резкий сброс оборотов двигателя) сопровождаются кратковременным сильным (на порядок) увеличением тока выноса, что в летных условиях может привести к уменьшению электрической безопасности Л А.  [c.600]


Принцип работы эконометра заключается в измерении ва1 ума во впускном коллекторе двигателя. Для измерения вакуума могут использоваться вакуумметры или электрические приборы, состоящие из датчика и приемника. Для измерительных преобразователей скоростных режимов работы могут быть применены индуктивные датчики, магиитопроводы которых изготовлены из электротехнической стали. Датчики с магнито-лроюдом из пермаллоя обеспечивают высокую чувствительность прибора. Давление в задроссельном пространстве может измеряться указа-, телем пневмоэлектрического типа, работа которого основана на применении мембранного чувствительного элемента с потенциометрическим преобразователем. Деформация мембраны датчика под действием давления в задроссельном пространстве преобразуется в перемещение ползунка проволочного реостата, изменение сопротивления которого регистрируется электрическим приемником.  [c.338]

В ряде случаев целесообразна классификация лабораторных анализаторов жидкостей (измерительных прибот ров и установок для лабораторного анализа состава, отдельных компонентов и свойств жидкостей) по количеству исследуемых компонентов, числу измеряемых па-paMetpoB, числу диапазонов, количеству точек измерения, форме представления информации, конструктивному исполнению, режиму работы, степени автоматизации. Кроме того, при необходимости лабораторные анализаторы жидкостей можно подразделять по динамическим характеристикам, времени переходного процесса, классу точности в зависимости от устойчивости к механическим воздействиям, воздействиям температуры, влажности и давления окружающего воздуха, внешних электрических и магнитных полей, показателей надежности, электрической прочности изоляции, времени прогрева, срока службы, взры-вобезопасности и т. п. (см. ГОСТ 16851—71).  [c.27]

Расходомеры с контролем движения меток. С помощью таких устройств в некотором небольшом объеме потока создается изменение каких-либо легко регистрируемых свойств среды и обеспечивается измерение скорости сноса помеченного таким образом объема. Скорость перемещения метки определяется по двум сигналам с возбудителя и приемника (или с двух приемников), расположенных в трубопроводе вдоль по потоку на известном расстоянии I. Очевидно, что скорость переноса помеченного объема равна V = //А/, где А/ — время прохождения меткой пути I. Местное изменение свойств потока может быть вызвано различными воздействиями на поток механическим (кратковременная закрутка) объемным (введение в поток порций среды другого состава, свойств или состояния радиактивного вещества, газовых пузырей в жидкость, вещества иной оптической плотности, порций подогретого вещества) электрическим (ионизация небольшого объема газа искровым методом или с помощью радиоактивного излучения) магнитным (изменение степени намагничивания измеряемой жидкости) тепловым (быстрый подогрев небольшого количества измеряемого вещества). Возможны три режима работы таких расходомеров [3].  [c.374]

Диагностирование подшипников при эксплуатации изделий, проведении испытаний и научных исследований. Объект - подшипниковая система с учетом всего комплекса влияющих факторов. Основная цель - получение комплексной оценки состояния объекта. Алгоритм диагностирования заключается в измерении интегральных электрических параметров при работе объекта в эксплуа-тационньгх режимах и условиях.  [c.484]

Теория работы первичного преобразователя в нестационарных условиях. Тепломассомер, основанный на принципе вспомогательной стенки, реагирует на проходящий через него тепловой поток, причем электрический сигнал базовых элементов строго соответствует этому потоку лиць в установившемся режиме. Принятая градуировка тепло-массомеров и тепломеров (см. гл. 5) основана на применении стационарного обогрева датчиков. Поэтому даже при полном отсутствии искажения рабочего процесса сигнал датчика может заметно отличаться от того, который соответствует измеренному потоку в стационарных условиях, если нестационарность рабочего процесса велика. Последняя наступает при условии соизмеримости постоянных времени переходного рабочего процесса и датчика.  [c.75]

Для контроля водного режима В тепловых цехах и работы в лабораториях используется переносный кондуктометр с автономным питанием и набором датчиков. Истинное значение электрической проводимости воды высокой чистоты может бьпь измерено только при отсутствии контакта пробы с воздухом, так как СО2 растворяется в пробе, повышая ее электропроводность до 0,8-1,5 мкС/см (равновесная вода). По этой причине лабораторные солемеры с негермети-зированными датчиками не пригодны для измерения солесодержа-ния чистых вод (менее 1 мг/кг Na l). Переносный кондуктометр имеет проточные датчики, которые подсоединяются к пробоотборной точке с помощью резинового шланга, что позволяет измерять электрическую проводимость без контакта с воздухом. Кроме датчика чистой воды переносный кондуктометр оснащен двумя датчиками с диапазоном электрических проводимостей до 30 тыс. мкС/см, что позволяет измерять солесодержание питатель-ных котловых и различных минерализованных вод.  [c.83]

Мессбауэровская спектроскопия. Специфическая дефектная структура должна влиять на параметры электрической и магнитной сверхтонкой структуры наноматериалов, полученных ИПД. В связи с этим большой интерес представляют результаты мессбауэрографических исследований, позволивших получить информацию не только о границах зерен, но и о приграничной области. В работах [152, 153] мессбауэровская спектроскопия была проведена на УМЗ Fe (чистотой 99,97%). Fe имеет сверхтонкую магнитную структуру, которая легко разрешима, что делает его удобным объектом для мессбауэровских экспериментов. Измерения были выполнены в просвечивающем режиме при комнатной температуре с использованием источника в Сг матрице.  [c.84]

Среди электромагнитных приборов для контроля твердости наиболее широко применяют структуроскоп ВС-ЮП. Он предназначен для контроля прутков, труб, уголков, болтов, шпилек и т. п. из сталей 10, 25, 35, 45 (ГОСТ 1050—74), а также из других сталей, для которых может быть установлена однозначная связь электромагнитных характеристик с твердостью. Частота тока питания проходного преобразователя 175 Гц. Принцип работы прибора основан на возбуждении в испытуемом токопроводящем изделии вихревых токов и анализе изменения вторичного поля вихревых токов в зависимости от измеряемого параметра (твердость). Для анализа применяют амплитудно-фазовый метод обработки информации, которая сравнивается с сигналом от эталонного образца. Прибор мо>кет работать в двух режимах — по первой п по третьей гармонике. Трудность нсполь-зоваипя электромагнитных структу-роскопов для контроля твердости заключаете в необходимости отстройки от многих влияющих на результат измерения неконтролируемых параметров (зазор, диаметр, длина изделия, вариации химического состава, удельная электрическая проводимость и т, д.). В настоящее время такие приборы, кап и магнитные, могут быть рекомендованы в качестве индикационных средств, а уточнять их метрологические характеристики можно только после соответствующих экспериментальных статистических исследований для стали выбранной марки.  [c.274]

Двигатели [внутреннего сгорания [F 02 свободнопоршневые В 71/00-71/06 со сжатием (воздуха В 3/00-3/12 горючей смеси В 1/00-1/14) на твердом топливе В 45/00-45/10 устройства для ручного управления D 11/00-11/10 с устройствами для продувки или заполнения цилиндров В 25/00-25/08) G 01 индикаторных диаграмм 23/32 датчики давления, комбинированные с системой зажигания двигателей 23/32 индикация (относительного расположения поршней и кривошипов 23/30 перебоев в работе 23/22 работы или мощности 23/00-23/32)) измерение расхода жидкого топлива F 9/00-9/02 испытание (М 15/00 деталей М 13/00-13/04)) F 01 <диафрагменные В 19/02 с использованием особого рабочего тела К 25/00-25/14) изготовление для них ковкой или штамповкой В 21 К 1/22 использование теплоты отходящих газов (F 02 G 5/00-5/04 холодильных машин F 25 В 27/02) комбинированные с электрическим генератором Н 02 К 7/18 работа в компрессорном режиме F 04 В 41/04 на транспортных средствах В 60 К 5/00-5/12] (гравитационные 3/00-3/08 инерционные механические 7/00, 7/04-7/10) F 03 G для грейферов В 66 С 3/14-3/18 изготовление деталей В 21 D 53/84 многократного расширения в паросиловых установках F 01 К 1102-7104 объемного вытеснения F 01 В (агрегатирование с нагрузкой 23/00-23/12 атмосферные 29/02 комбинированные с другими машинами 21/00-21/04 конструктивные элементы 31/00-31/36 предохранительные устройства 25/16-25/18 преобразуемые 29/04-29/06 пуск 27/00-27/08 расположение и модификация распределительных клапанов 25/10 регулирование 25/00-25/14 сигнальные устройства 25/26) работающие на горючих газах F 02 G 1/00-1/06 рас-пределителыше механизмы F 01 L 1/00-13/08 для пишущих машин В 41 1 29/38 пневматические в избирательных переключателях Н 01 Н 63/30  [c.72]


Здесь мы рассмотрим методики исследований, проводимых непосредственно в камере микроскопа, т. к., кроме значительного повышения производительности исследований, они позволяют получать новые результаты. Однако одновременно производить съемку рабочей гюверхности и проводить автоэмиссионные измерения в камере невозможно из-за большого значения величины напряженности электрического поля, требуемого для автоэмиссии и взаимодействия электронных пучков — автоэмиссионного и анализирующего. Поэтому камера микроскопа (в данном случае РЭМ-100) была модернизирована [131, 132] для работы в двух режимах (рис. 2.17) автоэлектронной эмиссии и наблюдения структуры.  [c.87]

Если давление в регулирующей (контрольной) ступени всегда используется как функция при построении кривых характеристик, то в качестве аргумента используют как электрическую мощность, так и расход пара. Рекомендуется (если это возможно) для турбин с противодавлением и конденсационного режима турбин с отбором пара строить характеристики по электрической мощности (нагрузке). При этом характеристики приобретают примерно или точно прямолинейную форму, что упрощает и уточняет нх построение. Кроме того, если нагрузка может быть установлена по показаниям стрелочных приборов и колебания ее во время измерений можно учесть, то колебания расхода, вызванные колебаниями нагрузки и работой регули1рования, настолько значительны (рис. 8-1), что для получения достоверных. данных приходится пользоваться только записями приборов самопис-. цев. Эти записи приводятся к среднему значению в интервале измерения, когда давление в камере регулирующей ступени по данным эксплуатационных приборов не менялось.  [c.171]

Электрический импульс с выхода ФЭУ обрабатывается с целью устранения амплитудных флуктуаций и поступает в устройство из-а ерения дальности. Упрощенная схема этого устройства показана ка рис. 5.24. Оно интересно прежде всего тем, что в нем применена аналого-цифровая схема слежения за дальностью. В состав устройства измерения дальности входят быстродействующий счетчик 1 фирмы Hewlett — Pa kard модели 5360А, вычислитель 7 фирмы R A модели 4101, а также другие блоки, показанные на рис. 5.24. При работе локатора возможны два режима измерения дальности— режим измерения временной задержки и режим слежения за дальностью. Связи, относящиеся ко второму режиму, показаны на рис. 5.24 пунктирными линиями. Рассмотрим сначала режим измерения временной задержки. При этом счетчик 1 предварительно устанавливается в нулевое состояние, переключатель 10 пропускает на вход устройства формирования строб-импульса дальности 9 только код с выхода счетчика 1, а все связи, обозначенные пунктирной линией, не задействованы. В момент генерации импульса излучения лазера формируется стартовый импульс, запускающий счетчик дальности 1. Отраженный от цели лазерный импульс, зарегистрированный фотоприемным устройством, останавливает работу счетчика 1. При этом на выходе последнего формируется код дальности, который вводится в вычислитель 7 и в устройство формирования строб-импульса дальности 9. Это устройство представляет собой реверсивный счетчик, на счетный вход которого поступают импульсы от синхронизатора 8. Длительностью этих импульсов определяется длительность строб-импульса дальности. В рассматриваемом устройстве можно было устанавливать дли-  [c.205]


Смотреть страницы где упоминается термин Электрические измерения режимы работы : [c.97]    [c.164]    [c.362]    [c.164]    [c.299]    [c.144]    [c.405]    [c.343]    [c.229]    [c.31]    [c.131]    [c.347]    [c.245]    [c.274]    [c.367]    [c.162]    [c.77]    [c.173]    [c.142]    [c.359]   
Справочная книжка энергетика Издание 3 1978 (1978) -- [ c.167 ]

Справочная книжка энергетика Издание 4 1984 (1984) -- [ c.192 ]



ПОИСК



Измерение работы

Электрические измерения

Электрический Работа



© 2025 Mash-xxl.info Реклама на сайте