Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение пространства

Через D G) обозначается пространство обобщенных функций (распределений) — пространство линейных непрерывных на D G) функционалов f Ф>с (непрерывность означает, что  [c.26]

В качестве подъемного газа применяется водород, размещенный в газовых к баллонах 7. Эти баллоны занимают б верхнюю часть корпуса дирижабля, над осевым коридором. Число их равно количеству отсеков и составляет семнадцать штук. В нижней части корпуса в двенадцати баллонах размещен топливный газ. Таким образом носовые и кормовые отсеки корабля №№ О, 1, 14, 15 и 16 не имеют баллонов с топливным газом. Для каждой пары баллонов, содержащих подъемный газ, устраивается газовая шахта 3. На корабле их девять штук. Кроме того, имеются одна подъемная шахта 4, служащая для выхода из осевого коридора на хребет корпуса, и три шахты для сообщения киля с осевым коридором. В отсеках, имеющих баллоны обоих типов, при нормальных условиях эксплоатации баллоны с подъемным газом никогда не бывают выполненными. Распределение пространства корпуса между баллонами подъемного и топливного газов показано на фиг. 10а.  [c.15]


Чтобы разъяснить высказанную выше точку зрения, рассмотрим случай, где эти понятия уже были использованы хотя бы интуитивно (фактически они необходимы, когда либо аргументы, либо значения преобразования не скаляры). Рассмотрим скалярное поле, например распределение температуры в некоторой области пространства. Областью определения такого поля служит всем известное классическое евклидово пространство. Утверждение, что распределение температуры в теле непрерывно, означает, что разность температур в двух бесконечно близких точках исчезающе мала если и суть две такие точки, т. е. если  [c.137]

В основе теории каркаса лежит следующее положение непрерывное однопараметрическое множество линий в пространстве задает поверхность и, обратно, всякая поверхность может быть представлена одпо-параметрическим множеством линий, свойства которых и закон их распределения в пространстве определяют свойства поверхности.  [c.166]

Основная задача ОС по динамическому распределению оперативной памяти состоит в постоянном учете свободных и запятых ее зон и в стремлении устранить фрагментацию. Явление фрагментации заключается в том, что в условиях мультипрограммирования между занятыми областями ОП остаются небольшие щели свободного адресного пространства. В отдельности каждая из таких пустот недостаточна для того, чтобы в ней целиком разместить очередную пользовательскую задачу, в сумме же они составляют достаточно большой объем  [c.92]

Возможен вариант, в котором различные задачи в разделяемой области используют общие подпрограммы. При этом тексты подпрограмм, единственная копия которых располагается в разделяемой области, не включены пи в один из образов каждой задачи. На рис. 4.13, б изображено соответствующее данному варианту распределение физического адресного пространства ЭВМ.  [c.138]

Если рабочая среда входит в аппарат через сравнительно небольшое отверстие, а специальные устройства для раздачи потока по всему сечению аппарата отсутствуют, то образуется свободная струя. При больших отношениях площадей сечения аппарата и входного отверстия Рк/Рц входящий поток даже в условиях ограниченного пространства практически близок к свободной затопленной струе (рис. 1.47, а), которая характеризуется приблизительно теми же соотнощениями, что и соотношения для струи, вытекающей в неограниченное пространство. Когда соотношение площадей такое, что стенки аппарата расположены к оси ближе, чем границы свободной струи, на определенном расстоянии от ее начала, струя деформируется, при этом значительно изменяется характер распределения скоростей. Форма струи в условиях ограниченного пространства аппарата еще больше усложняется в тех случаях, когда вход в аппарат осуществляется сбоку (изгиб струи, рис. 1.47, б) или в сторону, противоположную основному направлению потока внутри аппарата (радиальное растекание, рис, 1.47, в). Особенностью распространения струи в ограниченном пространстве является также неизменность общего расхода количество жидкости, входящей в аппарат, равно количеству жидкости, выходящей из него. Перед выходом жидкости из аппарата вся присоединенная масса отсекается от струи и возвращается обратно. Таким образом, вне струи во всем объеме аппарата осуществляется циркуляционное движение  [c.53]


Рис. 10.1. Распределение скоростей в различных сечениях струи при входе ее в ограниченное пространство аппарата с F (/F = 39 [134] Рис. 10.1. <a href="/info/20718">Распределение скоростей</a> в различных сечениях струи при входе ее в ограниченное пространство аппарата с F (/F = 39 [134]
Соверщенно естественно, что основная масса распределяемой жидкости после выхода из раздающей трубы будет двигаться по направлению к стенке аппарата, и, таким образом, перед рабочим слоем создастся очень неравномерное распределение скоростей (кривая 1, рис. 10.26, а). Для исключения т.жой возможности [6] предложено секционировать кольцевое пространство между перфорированной трубой и стенкой аппарата коаксиальными направляющими элементами по схеме рис. 10.26, а.  [c.290]

Рис. 5.1. Влияние электрического поля на распределение занятых состояний в /г-пространстве. / — до включения поля 2 — после включения поля на время, существенно превышающее время релаксации. Рис. 5.1. Влияние <a href="/info/12803">электрического поля</a> на распределение занятых состояний в /г-пространстве. / — до включения поля 2 — после включения поля на время, существенно превышающее время релаксации.
Термопары очень широко применяются для измерения температуры в самых различных условиях. В этой главе будут рассмотрены лишь наиболее важные аспекты термометрии, использующей термопары. Термопара остается основным прибором для измерения температуры в промышленности, в частности в металлургии и нефтехимическом производстве. Прогресс в электронике способствовал в последнее время росту числа применений термометров сопротивления, так что термопару уже нельзя считать единственным и важнейшим прибором промышленного применения. Преимущества термометра сопротивления по сравнению с термопарой вытекают из принципа действия этих устройств. Термометр показывает температуру пространства, где расположен его чувствительный элемент, и результат измерения мало зависит от подводящих проводов и распределения температуры вдоль них. Термопара позволяет найти разность температур между горячим и холодным спаями, если измерена разность напряжений между двумя опорными спаями. Эта разность напряжений возникает в температурном поле между горячим и холодным спаями. Разность напряжений идеальной термопары зависит только от разности температур двух спаев, однако для реальной термопары приходится учитывать неоднородность свойств электродов, находящихся в температурном поле она и является основным фактором, ограничивающим точность измерения температуры термопарами.  [c.265]

Закон распределения скоростей по высоте зазора — параболический (в пространстве — параболический цилиндр), средняя скорость  [c.196]

Свойства материалов зависят главным образом от кристаллической структуры. Поэтому в материаловедении рассматриваются распределение и характер движения электронов, расположение атомов в пространстве, размеры и форма кристаллических образований. Располагая данными о строении материалов, можно в известной мере судить об их свойствах и пригодности для работы в определенных условиях эксплуатации.  [c.4]

Л — постоянные, зависящие от формы тела и начального распределения температур t/ —функции координат, характеризующие изменение температуры в пространстве  [c.398]

Задача центрирования, являющаяся наиболее часто встречающимся частным случаем задачи совмещения, когда сведения о предполагаемой корреляции и асимметрии распределений параметров отсутствуют. Задача сводится к нахождению центра X области ХР в нормированном пространстве параметров, этот центр и принимается в качестве искомой точки Х ом (рис. 2.5, в).  [c.62]


Более того, существует предположение о независимости нормированной относительной проницаемости fg несмачивающей фазы (газ) от структуры порового пространства. Микростроение пористых сред ос" новное влияние оказывает на нормированную относительную проницаемость смачивающей фазы (вода). Это связано с тем, что смачивающая фаза имеет лучший физико-химический контакт с пористым материалом и занимает все недоступные для несмачивающей фазы участки порового пространства, вследствие чего распределение воды имеет сложный характер. Пространство, в котором движется несмачивающая фаза, становится гладким , и основной ее поток проходит по спрямленным путям, конфигурация которых обусловлена новой, вторичной структурой, образованной после распределения воды в пористой среде.  [c.88]

Существенное влияние на интенсивность тепломассопереноса в газожидкостных системах может оказать не только структура распределения дисперсной фазы в пространстве, но также ламинарный или турбулентный характер движения фаз.  [c.7]

Отметим, что в отличие от систем жидкость—твердое тело, газ—твердое тело в рассматриваемых газожидкостных системах сама поверхность раздела фаз (г, I) является величиной, изменяющейся во времени и пространстве. Поскольку процессы массо-переноса протекают в обеих фазах, в математическую постановку задачи массопереноса в системах газ—жидкость включаются уравнения переноса в обеих фазах с нелинейными граничными условиями. Изменение поверхности раздела фаз в процессе массопереноса влечет за собой изменение гидродинамических характеристик системы, а именно поля скоростей V (г, 1) вблизи межфазной поверхности. Однако, как это видно из уравнения конвективной диффузии, вектор поля скорости входит в левую часть (1. 4.. 3), следовательно, изменение скорости V вызовет и изменение распределения концентрации целевого компонента с (г, I) вблизи поверхности. Таким образом, в общем случае необходимо решать самосогласованную задачу тепломассопереноса и гидродинамики.  [c.15]

Перейдем к анализу процедуры осреднения, которая используется в модели раздельного течения. Гидродинамические параметры обеих фаз представляют собой некоторые функции пространственных координат г и времени (, а также зависят от распределения макрочастиц данной фазы в пространстве координат и импульсов. В связи с этим используются четыре типа осреднения таких функций. Во-первых, это пространственное осреднение мгновенных значений гидродинамических функций (например, осреднение по объему, который занимает данная фаза, по площади сечения и т. п.), во-вторых, это осреднение по некоторому промежутку времени локальных величин, в-третьих, это осреднение локальных мгновенных величин по ансамблю (например,  [c.192]

На больших расстояниях от поверхности пузырька распределение концентрации целевого компонента зависит только от тех членов ряда (6. 8. 16), в которых = 0. Таким образом, выражение (6. 8. 16) определяет распределение концентрации целевого компонента как во внутренней I 0), так и во внешней 1 = 0) области пространства, занятого жидкостью.  [c.280]

Распределение концентрации. На фиг. 4.19 изображен усовершенствованный зонд. Рабочим пространством зонда являлся промежуток между миниатюрной лампой накаливания и стеклянным стержнем, направленным в левую сторону. Цилиндрическая оболочка зонда, включающая рабочее пространство, направляет поток и исключает его отражение от стенок основного канала. Этим зондом проводились измерения в линейной области чувствительности фотоумножителя в соответствии с рекомендациями изготовителей.  [c.181]

В зависимости от вида линий и закона их образования и распределения в пространстве получаем поверхности различного класса. На некоторых поверхностях можно выделить множество конгруэнтных  [c.77]

Определитель такой поверхности состоит из проекций однопараметрического семейства линий уровня в какой-либо одной плоскости проекций и закона распределения линий семейства в пространстве (рис. 149). Алгоритм конструирования такой поверхности состоит из следующих этапов.  [c.119]

В самостоятельном разряде начиная с токов выше нескольких микроампер наблюдается неравномерное распределение электрического поля в межэлектродном пространстве, состоящем из трех зон (рис. 2.6) катодной 1, анодной 2 и столба разряда 3. На электродах часто наблюдаются пятна — анодное А и катодное К. Скачки потенциала и Ул обусловлены скоплениями пространственного заряда (рис. 2.7) и повышенным сопротивлением этих зон по сравнению со столбом. В длинной дуге можно отчетливо различить три указанные выше области, причем основные свойства столба мало зависят от процессов в катодной и анодной зонах. В связи с этим в дальнейшем отдельно рассмотрены явления в столбе дуги и в пограничных областях — катодной и анодной. Для коротких дуг, где влияние  [c.37]

Уравнение (6.6) содержит множитель который учитывает теплоотдачу в окружающее пространство, но не отражает того факта, что теплота отдается с поверхности пластины и температура по ее толщине неравномерна. В тонких пластинах, несмотря на значительную теплоотдачу, неравномерность распределения температуры по их толщине незначительна и ею можно пренебречь. В некоторых случаях неравномерность температуры по толщине пластин может достигать нескольких десятков градусов  [c.161]

В качестве линий, образующих каркас, обычно берут семейство плоских кривых, полученных в результате сечения поверхности пучком параллельных плоскостей. В основе теории каркаса лежит положение о том, что непрерывное однопараметрическое множество линий в пространстве задает поверхность, и, наоборот, всякая поверхность может быть представлена однопараметрическим множеством линий, свойства которых и закон их распределения в пространстве определяют свойства поверхности.  [c.84]


С ПОМОЩЬЮ небольшой хитрости величину дрейфовой скорости можно найти, не вникая в детали движения частиц. Для этого нужно учесть, что в замкнутой системе направленный дрейф частиц данного сорта будет приводить к неоднородному их распределению в пространстве и вызывать, таким образом, диффузионный поток противоположного направления. Равновесие же наступит тогда, когда два этих потока, дрейфовый и диффузионный, станут равными по величине.  [c.209]

Устройство доменной печи и ее работа. Доменная печь (рис. 2.1) имеет стальной кожух, выложенный внутри огнеупорным шамотным кирпичом. Рабочее пространство печи включает колошник 6, шахту 5, распар засыпной аппарат 8, через который в печь загружают шихту (о(рлюсованный агломерат и окатыши). Шихту взвешивают, подают в вагонетки 5 подъемника, которые передвигаются по мосту 12 к засыпному аппарату 8 и, опрокидываясь, высыпают шихту в приемную воронку 7 распределителя шихты. При опускании малого конуса J0 засыпного аппарата шихта попадает в чашу /1, а при опускании большого конуса 7<3 — в доменную печь, что предотвращает выход газов из доменной печи в атмосферу. Для равномерного распределения шихты в доменной печи малый конус и приемная воронка после очередной загрузки поворачиваются на угол, кратный 60 .  [c.24]

На рис. 4.12 представлен один из возможных вариантов распределения ОП объемом в 16К слов без аппаратуры диспетчера памяти. Операционная система занимает 6К слов собственно иод управляющую программу и один из разделов, управляемый пользователем, в 2К слова для некоторых системных выгружаемых задач (программа связи с оператором, программа вывода сообщений, файловая система программы связи). Пространство пользователя состоит из одного раздела, управляемого пользователем, иод названием RAZ размером в 8К слов и трех подразделов (R.A.ZA, RAZB, RAZ ). Главный раздел используется для больших программ, иаиример трансляторов. Эти программы всегда имеют низкий приоритет и являются выгружаемыми. Три подраздела иредназачаются для более высокоприоритетных задач. Чем больше разделов представлено пользовательским задачам и чем больше подразделов содержится в иих, тем полнее проявляются преимущества мультипрограммной обработки задач.  [c.136]

При решении динамической упругопластической задачи возникает вопрос о пространственно-временной аппроксимации процесса взрывной запрессовки трубки в коллектор. На рис. 6.3 представлена схема расчетного узла ячейки коллектора для расчета собственных напряжений и деформаций. Здесь Явн — внутренний радиус трубки б — толщина трубки, S — толщина стенки коллектора а — ширина перемычки между отверстиями. Выбор величины радиуса Ян проводится посредством численных расчетов из условия инвариантности НДС от Rh при неизменных характере и уровне импульсной нагрузки при взрыве. Расчет НДС проводится в осесимметричной постановке и отражает ряд существенных особенностей процесса запрессовки трубки в коллектор. К ним относятся возможность учета сложного характера распределения во времени и пространстве давления на внутренней поверхности трубки, обусловленного неодновременной детонацией цилиндрического заряда. Кроме того, с помощью специальных КЭ достаточно хорошо моделируется условие контакта трубки с коллектором в процессе прохождения прямых и отраженных волн напряжений при динамическом нагружении. Учет указанных особенностей позволяет рассчитывать неоднородное поле напряжений и деформаций по высоте трубки (толщине коллектора) и, следовательно, достаточно надежно при учете общ.их, остаточных и эксплуатационных напряжений проанализировать НДС в зоне недовальцовки, в которой инициировались имеющиеся разрушения в коллекторе.  [c.334]

Уравнения (4.7) —(4,8) показывают, что причинами изменения концентрации носителей могут быть неодинаковость числа носителей, втекающих (и вытекающих) в элементарный объем полупроводника (тогда dlvJ O), и нарушение равновесия между процессами генерации и рекомбинации носителей. Уравнения (4.9) и (4.10), называемые уравнениями плотности тока, характеризуют причины протекания электрического тока в полупроводнике электрический дрейф под воздействием электрического поля (grad tp= 0) и диффузию носителей при наличии градиента концентрации. Уравнение Пуассона характеризует зависимость изменений в пространстве напряженности электрического поля Е=—gгadф от распределения плотности электрических зарядов pi  [c.156]

Задача оптимизации параметров без учета сведений об их распределении, сводимая к задаче математического программирования. Для нормирования выходных параметров полезно иметь сведения о допусковой области, но не в пространстве ХП управляемых параметров, а в иространстве УП выходных параметров.  [c.62]

Большинство газожидкостных смесей, используюш,ихся в химической технологии, представляют собой дисперсные системы. Главной особенностью таких систе.м является наличие изменяюш ейся в пространстве и во времени поверхности раздела фаз. Эти излшнення влекут за собой силовые и тепловые взаимодействия на границе раздела, которые, в свою очередь, могут являться причиной появления градиентов скорости течения обеих фаз, давления, температуры и концентраций компонентов. Все эти эффекты воздействуют на процессы тепло- и массопереноса в системах газ—жидкость и могут как интенсифицировать, так и тормозить тепломассообмен. С другой стороны, указанные явления сами воздействуют на поверхность раздела фаз, изменяя ее распределение в пространстве.  [c.4]

В качестве начального условия к уравнению (1. 4. 3) обычно задают известное распределение концентрации целевого компонента l ,t = 0). Граничные условия должны формулироваться в зависимости от конкретного характера задачи они определяют значения концентраций целевого компонента па некоторых поверхностях, ограничивающих область пространства, занятую одной нз фаз. Напол1Н1ш основные виды граничных, условпй для уравнения конвективной диффузии. Условиями первого рода на поверхности задается значение самой концентрации  [c.14]

Рассмотрим непрерывный стационарный поток пузырьков газа через слой жидкости, находящ ейся в вертикальной трубе. Обозначим через п (Р, г) число пузырьков газа в точке пространства z с объемами, заключенными в интервале (Р, Р-Ь Р). Кинетическое уравнение для функции распределения п (Р, г), описывающее коалесценцию, можно записать в виде [551  [c.155]

Из анализа (6. 8. 20) видно, что распределение концентрации целевого компонента во внутренней области пространства, занятого жидкостью, имеет периодический во времени характер со сдвигом по фазе, зависягцим от радиальной координаты. Это волнообразное поведение функции концентрации целевого компонента обусловлено периодическим появлением возмущений в жидкости, которые затем распространяются от или к поверхности пузырька газа. Функция концентрации целевого компонента во внешней области пространства, занятого жидкостью, также является периодической, но, однако, не имеет сдвига по фазе ( =0).  [c.280]

Влияние термической обработки на скорость коррозии углеродистой стали в разбавленной серной кислоте представлено данными Хейна и Бауэра [491 (рис. 6.16) и подтверждено более поздними работами Клиари и Грина [33]. Углеродистая сталь, закаленная с высоких температур, имеет структуру, называемую мартенситом. Это однородная фаза, в которой атомы углерода занимают межузельные пространства тетрагональной объемно-центрированной решетки железа, учайное распределение атомов углерода и их взаимодействие с соседними атомами железа ограничивает и с эффективность как катодов локальных элементов, поэтому в разбавленной кислоте скорость коррозии мартен-  [c.128]


При i=0 во всех точках, где ЯФО, имеем АТ=0. В точке R=0 при /=0 имеем АГ оо. В правильности выбора постоянного множителя в уравнении (6.1) можно убедиться путем вычисления интеграла, выражающего полное количество введенной теплоты во всем объеме бесконечного тела. Это количество в любой момент времени равно Q, так как тело в данном случае не отдает теплоты в окружающее пространство. Распределение температуры при распространении теплоты от мгновенного источника теплоты, приложенного в точке О на поверхности полубес-конечного тела (рис. 6.1), аналогично (6.1) для бесконечного  [c.158]


Смотреть страницы где упоминается термин Распределение пространства : [c.23]    [c.442]    [c.73]    [c.20]    [c.188]    [c.221]    [c.290]    [c.66]    [c.267]    [c.193]    [c.258]    [c.461]    [c.162]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.10 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте