Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Автоколебания системы — Колебания Параметрические колебания

Из сказанного следует, что автоколебания отличны от собственных колебаний, поскольку последние являются затухающими, в то время как автоколебания не затухают. С другой стороны, автоколебания отличаются от вынужденных и от параметрических колебаний, так как и те и другие так или иначе вызываются внешними силами, характер действия которых задан. В этом смысле автоколебания могут быть названы также самовозбуждающимися, так как процесс колебаний здесь управляется самими колебаниями. Источник дополнительной энергии, поддерживающей колебания системы, находится вне упругой системы. Например, энергия воздушного потока, набегающего на вибрирующие части самолета, вызывает особый вид автоколебаний, называемый флаттером.  [c.530]


Если замкнутая траектория на фазовой плоскости является изолированно , она называется предельным циклом. Наличие устойчивого предельного цикла на фазовой плоскости говорит о том, что в системе возможно установление незатухающих периодических колебаний, амплитуда и период которых в определенных пределах не зависят от начальных условий и определяются лишь значениями параметров системы. Такие периодические движения А. А. Андронов назвал автоколебаниями, а системы, в которых возможны такие процессы, — автоколебательными [ 1 ]. В отличие от вынужденных или параметрических колебаний, возникновение автоколебаний не связано с действием периодической внешней силы или с периодическим изменением параметров системы. Автоколебания возникают за счет непериодических источников энергии и обусловлены внутренними связями и взаимодействиями в самой системе. Одним из признаков автоколебательной системы может служить присутствие так называемой обратной связи, которая управляет расходом энергии непериодического источника. Из всего сказанного непосредственно следует, что математическая модель автоколебательной системы должна быть грубой и существенно нелинейной.  [c.46]

В данной главе излагаются начальные сведения о методе точечных отображений вводятся основные понятия и приемы исследования, которые позволяют изучать поведение фазовых траекторий в двумерном и трехмерном фазовом пространстве. На конкретных примерах простейших кусочно-линейных систем рассматриваются автоколебания, вынужденные и параметрические колебания, а также скользящие движения, возможные в этих системах.  [c.70]

Для поддержания незатухающих колебаний к системе должна непрерывно подводиться энергия от внешнего источника. В этом случае колебания будут вынужденными. В зависимости от способа поддержания незатухающих колебаний различают вынужденные колебания под действием периодической силы, автоколебания, параметрические колебания, релаксационные колебания и т.д.  [c.5]

По своей структуре данная книга отличается от других работ, в которых ставилась аналогичная задача. Основная идея изложения — подразделение колебаний на различные типы по механизму их возникновения, т. е. по виду и месту приложения возмущения, действующего на колебательную систему. Поэтому наряду с автономными собственными колебаниями и автоколебаниями рассматриваются гетерономные Колебания при параметрическом возбуждении и вынужденные колебания. В заключение исследуются связанные колебания, охватывающие обе эти области, и таким образом намечается переход к системам с несколькими степенями свободы, а также к колебаниям сплошной среды.  [c.7]


Дается изложение основ теории механических колебаний, которое опирается на общин курс теоретической механики и иллюстрируется рядом типовых примеров. Отличительной особенностью изложения является разделение материала по главам не по признаку числа степеней свободы механической системы, а по признаку общности рассматриваемых, колебательных явлений. В соответствии с этим в главах I—IV рассматриваются определенные типы колебательных явлений (свободные колебания, вынужденные колебания, параметрические колебания, автоколебания). Особое внимание уделяется нелинейным задачам.  [c.1]

Чтобы отличить автоколебательную систему без параметрического возмуш ения от автоколебательной системы с параметрическим возмуш,ением, первая называется свободной автоколебательной системой, а происходящие в ней колебания — свободными автоколебаниями или просто автоколебаниями.  [c.25]

К внутренним помехам следует отнести колебания, зависящие от параметров и режимов механической системы и не связанные с поведением окружающей среды. Например, побочные колебания шипа в подшипнике от некруглости шипа и тел качения, автоколебания, параметрические резонансы, влияние приводного устройства местные резонансы отдельных частей конструкций колеблющейся системы и др.  [c.7]

Как видно из изложенного, несмотря на большое количество лабора-торно-вычислительных работ, многие важные темы механики оказались еще не охваченными. Поэтому в настоящее время да кафедре продолжается работа по улучшению и усовершенствованию практикума. Прежде всего имеется в виду расширить темы нелинейных колебаний и устойчивости ввести главы, посвященные электромеханическим системам, влиянию неидеальных источников энергии, движению при наличии случайных воздействий [3]. Большое внимание уделяется дальнейшему созданию собственно лабораторных работ, сопровождающихся проверкой теоретического материала ча действующих установках. Для наглядности полученных результатов и для полноты теоретических сведений большое значение имеет практикум на моделирующих машинах, где решаются задачи из самых различных областей механики типа решения дифференциального уравнения третьего порядка, определения зон устойчивости и неустойчивости при параметрическом резонансе, построения амплитудно-частотной характеристики механической или электромеханической системы, нахождения предельного цикла автоколебаний, вычисления критической эйлеровой нагрузки и т.п.  [c.61]

Книга разделена на две части в первой обсуждаются колебания и волны в линейных системах и средах, во второй — в нелинейных. С нашей точки зрения, такое разделение значительно облегчает восприятие теории колебаний и волн на современном уровне. Так, распространение плоской гармонической волны в периодически слоистой среде описывается практически той же математической моделью, что и явление параметрической неустойчивости в сосредоточенной системе с одной степенью свободы, и их параллельное рассмотрение вполне естественно. Анализ же, например, автоколебаний в возбудимой среде — ансамбле автогенераторов — представляется непосредственным обобщением задачи о взаимодействии небольшого числа генераторов и т. д.  [c.9]

При собственных колебаниях и автоколебаниях частота колебаний определяется самим осциллятором. Поэтому их называют автономными в отличие от параметрических и вынужденных колебаний, называемых гетерономными, поскольку частота последних задается внешними воздействиями. В системах с параметрическим возбуждением внешнее воздействие сказывается в периодических изменениях одного или нескольких параметров. Примером служит маятник на нити, длина которой периодически меняется. Математический отличительный признак колебаний с параметрическим возбуждением состоит в том, что в описывающих их дифференциальных уравнениях коэффициенты явно зависят от времени (как правило, периодически).  [c.29]

Колебания тел (физических систем) широко распространены в природе и технике, бывают разных видов и совершаются под влиянием различных причин. Виды колебаний вынужденные - вызванные вынуждающей силой (переменной во времени, не зависящей от колеблющейся системы) или путем кинематического возбуждения (заданным движением какой-либо точки системы) свободные - обусловленные начальным запасом энергии, происходящие без воздействия вынуждающей силы параметрические, которые поддерживаются изменением параметров системы (массы, момента инерции, коэффициента упругости и др.) автоколебания — асимптотически устойчивое периодическое движение, возбуждаемое энергией, идущей от внешнего источника, поступление которой регулируется движением самой колеблющейся системы и др.  [c.52]


Для правильного определения наименований и числа звеньев, с которых наиболее целесообразно снимать сигналы, необходимо знать природу возникающих в MP колебаний. Существуют работы по изучению колебательных процессов, в которых механические колебания делятся по форме и виду. Известны такие формы механических колебаний, как продольные, поперечные, изгибные, осевые, крутильные. Колебания также можно разделить по признакам и видам. Например, по энергии, питающей колебательную систему, колебания могут быть следующих видов свободные, вынужденные, параметрические, автоколебания, колебания от соударения упругих тел, случайные. Колебания можно различать по числу степеней свободы, характеру колеблющейся системы, закону изменения основных параметров и другим признакам.  [c.258]

Примеры параметрически возбуждаемых колебаний в машиностроении. Параметрические колебания часто встречаются в задачах динамики механизмов и машин. Вал, сечение которого имеет неодинаковые главные жесткости при изгибе, может испытывать незатухающие поперечные колебания даже в том случае, когда он полностью уравновешен. Причиной поперечных колебаний является периодическое (при постоянной угловой скорости) изменение изгибных жесткостей относительно неподвижных осей. В неподвижной системе координат поперечные колебания вала описываются дифференциальными уравнениями с периодическими коэффициентами. Если использовать координатную систему, которая вращается вместе с валом, то придем к дифференциальным уравнениям с постоянными коэффициентами. Поэтому в данном примере изгибные колебания можно трактовать и как параметрически возбуждаемые колебания, и как автоколебания. Для вала, который может совершать поперечные колебания только в одной плоскости, причиной поперечных колебаний является периодическое изменение изгибной жесткости вала в этой плоскости. Примером системы с периодически изменяющейся приведенной массой служит шатунно-кривошипный механизм. Параметрическое возбуждение колебаний возможно во многих системах, где движение передается через упруго деформируемые звенья, например, в спарниковой передаче в локомотивах.  [c.116]

Некоторые другие классы параметрических колебаний упругих систем. Параметрические колебания встречаются также при изучении динамики валов, роторов и более сложных механизмов [7]. Так, вал, сечение которого имеет неодинаковые главные жесткости, может испытывать интенсивные поперечные колебания даже в тс.м случае, если он полностью уравновешен и если его ось параллельна ускорению сил тяжести (рис. 2, а). Непосредственной причиной возбуждения колебаний в этом случае является периодическое изменение жесткости во времени. Эти колебания можно трактовать и как параметрически возбуждае.мые колебания, и как автоколебания. В неподвижной системе координат поведение вала описывается, как в других параметрических задачах, дифференциальными уравнениями с периодическими коэффициентами. Если использовать систему координат, вращающуюся вместе с валом, то получим дифференциальные уравнения с постоянными коэффициентами. Более четки.м в классификационном отношении примером может служить вал, совершающий поперечные колебания лишь в одной плоскости (рпс. 2, б). Примером системы, в которой периодически меняется некоторая приведенная масса, может служить шатунно-кри-вошипный механизм (рис. 2, в). Жесткость периодически меняется в механизме спарниковой передачи в локомотивах (рис. 2, г). Подробнее см. работы [1, 7, 8, 22].  [c.348]

Предыдущие задачи, следуя классической терминологии теории колебаний, обычно называют задачами о вынул<денных колебаниях систем с неидеальным источником энергии. Такая л<е преемственность терминологии используется при классификации автоколебаний и параметрических колебаний при ограниченном возбул<дении. Примером параметрической системы с ограниченным возбул<дением является система, изобрал<епная на рисунке и. 3 таблицы. Уравнения движения этой системы имеют вид [21]  [c.200]

Механические колебания в зависимости от причин, их вызывающих, можно разделить на четыре группы свободные, вынужденные, параметрические и автоколебания. К свободным относятся колебания, возникающие в механических системах в результате импульсного внешнего воздействия —толчка. Особенностью этих колебаний является то, что их характер после воздействия толчка определяется внутренними силами упругости — восста-1гпвливающнми силами, а энергия для возбуждения колебаний вводятся в ч истему извне.  [c.96]

РЕГЕНЕРАЦИЯ (от поэднелат. regeneratio — возрождение, возобновление) в радиофизике — компенсация потерь динамической системы за счёт подключения К ней источника энергии и устройства, регулирующего связь между ними. Для Р. используются двухполюсники с падающей вольт-амперной характеристикой (нек-рые газоразрядные приборы, туннельные диоды) или цепь положит, обратной связи. Возможна параметрич. Р., возникающая в колебат. системе при периодич, изменении одного из её энергоёмких элементов (ёмкость, индуктивность) (см. Параметрическая генерация и усиление электромагнитных колебаний). Полная компенсация потерь приводит к возбуждению автоколебаний, неполная — к возрастанию времени затухания свободных колебаний в системе.  [c.300]


Смотреть страницы где упоминается термин Автоколебания системы — Колебания Параметрические колебания : [c.68]    [c.311]    [c.4]    [c.348]    [c.222]    [c.17]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.0 ]

Прочность Колебания Устойчивость Т.3 (1968) -- [ c.0 ]



ПОИСК



АВТОКОЛЕБАНИЯ И ПАРАМЕТРИЧЕСКИЕ КОЛЕБАНИЯ МЕХАНИЧЕСКИХ СИСТЕМ (К. С.Колесников)

Автоколебания

Автоколебания систем —

Колебания автоколебания

Колебания параметрические

Ряд параметрический



© 2025 Mash-xxl.info Реклама на сайте