Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Комбинационное рассеяние активно

Использование в оптическом эксперименте лазерных источников света привело к открытию ряда явлений, не совместимых с принципом линейности. Практически одновременно с созданием первых лазеров были обнаружены такие нелинейные оптические явления, как генерация гармоник, сложение и вычитание частот световых потоков, вынужденное комбинационное рассеяние света, двухфотонное поглощение. Было ясно также, что сам лазер — это оптическая система, в которой важную роль играет эффект насыщения усиления света активной средой. Все это стимулировало бурное развитие теоретических и экспериментальных исследований нелинейного взаимодействия света с веществом, разработку методов практического использования нелинейных оптических явлений в науке и технике и привело, в частности, к возникновению нелинейной оптики.  [c.298]


Благодаря этому по мере прохождения через активную среду интенсивность первой стоксовой компоненты усиливается лавинообразно. Этот процесс схематически показан на рисунке утолщением соответствующей стрелки. В спонтанном комбинационном рассеянии, которое описывается вторым членом в (36.21), прирост интенсив-  [c.313]

На исследуемое вещество направляются два лазерных луча, разности частот которых совпадают с одной из частот собственных колебаний молекулы или кристалла, что приводит к изменению заселенности колебательных уровней. Для анализа используется дополнительный, так называемый пробный, луч. Фактически исследуется стоксово и антистоксово рассеяние пробного луча. Описанную схему принято называть схемой активной спектроскопии рассеяния света. Пробный луч в этой схеме может использоваться как для регистрации фазовых соотношений между элементарными возбуждениями в разных точках среды (между фазами колебаний разных молекул) — когерентная активная спектроскопия так и для регистрации разности населенностей уровней—некогерентная активная спектроскопия. Естественно, что в обоих случаях рассеянный сигнал, получаемый в схеме активной спектроскопии, существенно превышает уровень сигнала, получаемого в спонтанном комбинационном рассеянии.  [c.316]

Важной особенностью когерентного варианта активной спектроскопии является то обстоятельство, что в отличие от спонтанного комбинационного рассеяния индикатриса рассеяния существенно анизотропна и рассеянное на молекулярных колебаниях излучение представляет собой хорошо коллимированный практически полностью пространственно когерентный пучок. Его высокая интенсивность и направленность открывает ряд новых возможностей перед спектроскопией рассеяния света.  [c.316]

При очень высоких интенсивностях лазерного излучения может иметь место вынужденное комбинационное рассеяние, при котором активное вещество выполняет роль усилителя бегущей волны. В этом случае может быть получено рамановское преобразование с высокой эффективностью.  [c.219]

Когерентная спектроскопия комбинационного рассеяния (стационарная н нестационарная см. Активная лазерная спектроскопия) позволяет измерять времена релаксации, изучать процессы внутри- и межатомного переноса энергии возбуждения для трёх- и более уров-невых систем (рис. 5).  [c.308]

Основному материалу, связанному с нелинейными задачами, предпослана специальная глава, где дано довольно подробное изложение теории распространения волновых пакетов в линейной диспергирующей среде. Фемтосекундные лазерные импульсы внесли много нового и в этот, казалось бы давно уже завершенный, раздел волновой оптики. Проблемы основанной на достижениях пико- и фемтосекундной оптической технологии нестационарной лазерной спектроскопии в целом-далеко выходят за рамки этой книги. Поэтому мы ограничились лишь одним, но, как нам представляется, ярким примером — теснейшим образом связанной с волновой нелинейной оптикой активной спектроскопией комбинационного рассеяния. Переход к фемтосекундным импульсам позволяет получить здесь не только исчерпывающую информацию о релаксации энергии и фазы возбуждения, но и непосредственно наблюдать форму молекулярных колебаний. Книга завершается специальной главой, посвященной фемтосекундным лазерным системам. Акцент сделан на основных принципах и концепциях, лежащих в основе разработки систем, которые позволяют уже сейчас получать фемтосекундные импульсы в чрезвычайно широком диапазоне спектра, простирающегося от дальней инфракрасной области до вакуумного ультрафиолета.  [c.8]


Экспериментально ВКР проявляется как неустойчивость интенсивной световой волны накачки в комбинационно-активной среде. Вторая компонента светового поля возникает за счет спонтанного комбинационного рассеяния. ВКР является пороговым эффектом — неустойчивость возникает, если интенсивность / мощной световой волны накачки с частотой сОн превышает пороговое значение / ор, зависящее от уровня оптических потерь. При этом условии интенсивность низкочастотной (стоксовой) волны с частотой сОс усиливается по закону  [c.136]

Руководствуясь данными табл. 7.20 и 7,21 при выборе материала для конкретных применений, необходимо иметь в виду их относительный характер, что требует в каждом случае дополнительного анализа, учитывающего, в частности, особенности режимов эксплуатации устройств. Кроме перечисленных пассивных нелинейных оптических явлений в веществе могут проходить и так называемые активные нелинейные оптические процессы. К ним относятся, например, процессы многофотонного поглощения, вынужденного рассеяния Мандельштама—Бриллюэна, вынужденного комбинационного рассеяния света и некоторые другие. Физической основой этих процессов является то обстоятельство, что вблизи резонансных частот взаимодействия восприимчивости приобретают комплексный характер. Детальное рассмотрение всей со-  [c.239]

При низких напряженностях поля или низких плотностях фотонных потоков, характерных для обычных некогерентных источников света, диэлектрическая проницаемость, или показатель преломления большинства диэлектриков, почти постоянна и не зависит от напряженности поля. При очень высоких л е напряженностях поля или плотностях фотонных потоков, которые можно получить при помощи лазеров большой мощности, картина меняется и в поляризуемости среды приходится учитывать члены более высоких порядков. Возникающие при этом нелинейные эффекты вызвали живой интерес и большую активность ученых — теоретиков и экспериментаторов, и число публикаций по Данному вопросу возрастает колоссальными темпами [116— 120]. Исследования таких эффектов быстро прошли путь от первого слабого обнаружения второй гармоники рубинового лазера в 1961 г. до весьма эффективного (10—30%) преобразования в частоты второй гармоники, обнаружения третьих гармоник и постоянной составляющей (оптическое выпрямление), вынужденного комбинационного рассеяния и создания лазеров на основе целого ряда многочастотных параметрических эффектов [121].  [c.130]

Таблица 2.1. Спектральные линии твердых тел, активные в комбинационном рассеянии света [2.16-2.20] Таблица 2.1. <a href="/info/14533">Спектральные линии</a> твердых тел, активные в <a href="/info/22634">комбинационном рассеянии</a> света [2.16-2.20]
Подлинную революцию в молекулярной спектроскопии совершили оптические квантовые генераторы когерентного излучения — лазеры, впервые созданные в 1960 г. В результате существенно расширились возможности техники спектроскопии (были разработаны разного типа высокоинтенсивные когерентные монохроматические источники света в широком диапазоне длин волн, работающие в импульсном и непрерывном режиме, лазеры, перестраиваемые по длинам волн, и т. д.) качественно изменились многие методики классической спектроскопии (спонтанное комбинационное рассеяние света, флуоресценция, резонансное комбинационное рассеяние света, спектры возбуждения и т. д.) и, самое главное, были созданы принципиально новые методы исследования вещества (обращенное комбинационное рассеяние, когерентное активное комбинационное рассеяние света, внутри-резонаторное поглощение и т. д.). Сейчас еще трудно предсказать все возможности дальнейшего развития лазеров. Ясно одно, что чувствительность, разрешающая способность, временное разрешение и т, д, изменились всего за полтора десятилетия настолько, что многое, казавшееся ранее фантастичным, как, например, регистрация одиночных атомов в газовой фазе, уже реализовано. У лазерной спектроскопии молекул многое впереди. Одной из сдерживающих причин практической реализации ее идей является сложность их внедрения в серийное производство.  [c.10]


Колебательно-Вращательные спектры (инфракрасные и комбинационного рассеяния) двухатомных молекул. Определение частот колебаний и межъядерных расстояний. Колебательные спектры многоатомных молекул в конденсированной фазе. Критерий проявления различных форм колебаний (активность колебаний) в PIK- и КР-спектрах на примере молекул СО2 и Н2О. Зависимость интенсивности линий в ИК- и КР-спектрах от температуры. Инфракрасная спектроскопия и структурно-групповой (функциональный) анализ.  [c.267]

Правила отбора позволяют также довольно легко установить, что полносимметричные колебания центросимметричных молекул проявляются в спектрах комбинационного рассеяния и не обнаруживаются в инфракрасных спектрах. При совершении этих колебаний момент остается неизменным, а поляризуемость изменяется в СИЛЬНО степе 1И. Напротив, в случае антисимметричных колебаний дипольны " момент изменяется, а поляризуемость остается практически постоянной. Поэтому соответствующие частоты а <-тивны в инфракрасном спектре и не активны в спектре комбинационного рассеяния.  [c.761]

Как было объяснено в разд. 4.21, под действием лазерного излучения большой мощности в среде, активной к комбинационному рассеянию, возникают вынужденные стоксовы и антистоксовы волны первого и высших порядков. Если, однако, мощность лазера относительно низка, то сначала проявляется только стоксова волна первого порядка с частотой = в- При этих условиях можно ограничиться только учетом взаимодействия между лазерной н стоксовой волнами.  [c.206]

Кроме описанных процессов взаимодействия между двумя или тремя волнами, в активной к комбинационному рассеянию среде может наблюдаться в том же (третьем) приближении связь между четырьмя волнами, которая приведет, например, к характерным конусам излучения высших стоксовых компонент.  [c.215]

Рассмотрим теперь так называемое активное комбинационное рассеяние [3.16-4]. Оно содержит элементы как спонтанного эффекта, так и эффекта, индуцированного извне. В нем участвуют активные в комбинационном рассеянии частоты колебаний молекулы, находящейся под действием двух интенсивных лазерных волн (с частотами 1, 2, волновыми векторами к., кг. и волновыми амплитудами Е, 2) разность этих двух частот должна равняться частоте молекулярного колебания а. Лазерные волны возбуждают в среде молекулярные колебания, при которых молекулы в различных областях пространства колеблются с согласованными фазами волновое число этих пространственно когерентных молекулярных колебаний [мы обратимся к ним снова в связи  [c.368]

Фиг. 42. Волновые векторы при активном комбинационном рассеянии. Фиг. 42. <a href="/info/16410">Волновые векторы</a> при активном комбинационном рассеянии.
Наряду с только что обсужденной когерентной компонентой активного комбинационного рассеяния существует и не-когерентная компонента. Она обусловлена некогерентными  [c.369]

Для преобразования выбирается обычно среда, в которой скачок частоты при комбинационном рассеянии имеет больщую величину. Наибольщее значение колебательной частоты (и соответственно скачка частот при комбинационном рассеянии) имеет водород (сой = = 4155 СМ ). Поэтому активной средой часто служит газообразный водород при давлении (50-f-100) 10 Па и жидкий водород. Применяется также дейтерий ((й = = 2993 см ), жидкий азот ((о = 2326 см- ) и другие среды.  [c.315]

Схема возбуждении (вверху) и зондирования (вни , у) в активной лааеркой спектроскопии на примере двухуровневой системы а — одкофотонное возбуждение возбуждение за счёт однофотонного поглощения) ж однофотонвое. зондирование с помощью регистрации изменений в поглощении или усилении (пунктир) б — возбуждение с помощью двухфотонного поглощения и комбинационного рассеяния света (КРС) зондирование осуществляется аа счёт антистоксова или стоксова (пунктир) КРС, а также двухфотонного поглощения или усиления (пунктир).  [c.38]

Благодаря высокой интенсивности излучения импульсных лазеров запись голограмм производится па спец. материалах, т. к. многие материалы, предназначенные для непрерывной записи голограмм, мало чувствительны к коротким импульсам излучения. В И. г. используются тонкие ыагк. плёнки, к-рые могут быть локально нагреты лазерным излучением до точки Кюри (MnBi, EuG и др.), что приводит к изменению магн. п магпитооптич. свойств [1] полупроводниковые кристаллы, поглощающие жидкости и газы, комбинационно-активные среды (см. Комбинационное рассеяние света), среды с инверсией заселённостей и фазовой памятью [4].  [c.132]

Рис. 5. Когерентная активная спектроскопия комбинационного рассеяния а — квантовые переходы б — времевнбй ход процессов нестационарной когерентной спектроскопии комбинационного рассеяния. Сигнал с частотой Шс=<о + (и, — ш,) регистрируется спустя время задержка т (переменное) после во -действия двух импульсов лазерной накачки (частбты ш,, юД (внизу пунктиром показан временной ход амплитуды р когерентных молекулярных колебаний, возбуждённых импульсами Рис. 5. Когерентная активная <a href="/info/38740">спектроскопия комбинационного рассеяния</a> а — <a href="/info/18867">квантовые переходы</a> б — времевнбй ход <a href="/info/249985">процессов нестационарной</a> когерентной <a href="/info/38740">спектроскопии комбинационного рассеяния</a>. Сигнал с частотой Шс=<о + (и, — ш,) регистрируется спустя время задержка т (переменное) после во -действия двух импульсов <a href="/info/144305">лазерной накачки</a> (частбты ш,, юД (внизу пунктиром показан временной ход амплитуды р когерентных <a href="/info/249784">молекулярных колебаний</a>, возбуждённых импульсами

Оптич. методы, основанные на анализе рассеяния света, послужили одной из существенных основ становления молекулярной физики и её приложений. Так, нефелометрия даёт возможность получать данные о межмолекулярном взаимодействии в растворах, определять размеры и молекулярную массу макромолекул полимеров, а также частиц в коллоидных системах, взвесях и золях. Ценные сведения о структуре уровней энергии молекул, их взаимодействии и строении вещества даёт изучение комбинационного рассеяния света и Мандельштама — Вриллюэна рассеяния. Использование лазеров резко увеличило информативность спектроскопии рассеяния, привело к открытию вынзокденных рассеяний я к развитию нового направления, основанного на воздействии лазерного излучения на распределение рассеивающих частиц (молекул) по энергетич. состояниям (активная ла.зерная спектроскопия).  [c.420]

Оптические свойства П. Соотношения между амплитудой, фазой и поляризацией падающей, отражённой и преломлённой на П. световых волн определяются Френеля формулами. У П. образуются связанные состояния фотонов с поверхностными оптич. фононами, пла.э-монами и др. дипольно-активными квазичастицами, наз. поверхностными поляритонами. Анализ их характеристик лежит в основе одного из перспективных оптич. методов исследования П. Интенсивность комбинационного рассеяния света на молекулах, адсорбированных на металлах, в ряде случаев значительно выше (в 10 —10 раз), чем на тех же молекулах в объёмной фазе (гигантское комбинационное рассеяние). Это обусловлено усилением эл.-магн. поля геом. неоднородностями П., а также эфф. передачей энергии от поверхностных электронных возбуждений колебательным модам адсорбиров. молекул. При пересечении П. эаряш. частицами наблюдается эл.-магн. переходное излучение.  [c.654]

Нелинейная фильтрация и компрессия импульсов твердотельных лазеров с активной синхронизацией мод и модуляцией добротности. Преимущ,ества лазеров, работаюш,их в режиме двойной модуляции, детально обсуждались в 6.2. Главное из них — сочетание высокой импульсной мош,ности порядка 10 Вт с килогерцовой частотой повто-)ения. Для сжатия высокоэнергетичных импульсов как на основной 57], так и на удвоенной частоте [58], приходится применять сравнительно короткие отрезки световодов, L 1—10 м. Ограничение на длину световода определяется порогом вынужденного комбинационного рассеяния и приводит к неравенству /эфф1 16/ с, где g 10 см/Вт, эфф — эффективная интенсивность ( 5.5). В этом случае реализуется бездисперсионная фазовая самомодуляция, которая приводит к снижению энергетической эффективности компрессии и контраста сжатого импульса. Кроме того, лазеры с двойной модуляцией имеют более высокий уровень флуктуаций параметров излучения, что, естественно, дестабилизирует параметры сжатых импульсов.  [c.262]

Наряду с образованием стоксова импульса с частотой os = = ol — 0)21 в активной среде при вынужденном комбинационном рассеянии может образовываться и антистоксов импульс. При этом, однако, аналогично случаю трехволнового взаимодействия при параметрической генерации должно выполняться условие согласования фаз Ак = 2кь — кл — ks O. В асимптотическом приближении коэффициент усиления для антистоксова излучения коротких импульсов в нестационарном случае (т. е. при условии Ti,< T2iGr/2) рассчитывался в [8.21] для диспергирующей и недиспергирующей сред. В обоих случаях оказалось, что антистоксово излучение максимально в направлении, определяемом соотношением Afe Gr/L, причем в зависимости от реализованных условий величина От определяется либо выражением (8.34), либо (8.37). Зная От, можно найти угол между направлениями антистоксова излучения и направлением распространения лазерных импульсов. Таким образом, направления распространения антистоксова излучения образуют вокруг лазерного луча конусообразную поверхность.  [c.298]

Вместе с тем в проблеме дистанционного зондирования еще не использованы возможности активной спектроскопии комбинационного рассеяния и резонансной флюоресценции при многофотонном поглощении, эффектов самомодуляции спектра в динамически нелинейной среде, мощностного аналога метода многоволновой диагностики поглощающего аэрозоля в условиях его радиационного испарения и фрагментации и ряда других нелинейных оптических явлений. Следует отметить также перспективность ком-плексирования методов линейного и нелинейного зондирования для извлечения многопараметрической информации без задания априорных моделей среды.  [c.234]

Линии, от]тосящиеся к типам симметрии А , В , В , активны как в комбинационном, так и в инфракрасном спектрах, а линии, относящиеся к типу симметрии А , активны лишь в спектре комбинационного рассеяния. Инфракрасные полосы, соответствующие плоским, колебаниям, должны быть полосами типа А ш В, а инфракрасные полосы, соответствующие неилоским колебаниям, должн )1 быть полосами типа С с изменением дипольного момента перпендикулярно плоскости молекулы I ].  [c.150]

В 1964 г. Б. Стойчев [17] выполнил следующий эксперимент. Через активную к комбинационному рассеянию среду, кроме интенсивного лазерного излучения (частота 1,), пропускался свет с непрерывным спектральным распределением в окрестности (ь + fм При / = /1. -Ь /м в этом непрерывном спектральном распределении наблюдалось поглощение, интенсивность которого зависела от интенсивности лазерного излучения. Это явление называется обращенным эффектом комбинационного рассеяния (см. обоснование в разд. 4.22).  [c.206]

Из этих уравнений видно, что при прохождении через кювету стоксова волна усиливается независимо от ее начальной фазы и от соотношения фаз лазерной и стоксовой волн одновременно лазерная волна ослабляется. Может быть высказано следующее общее утверждение при взаимодействии двух волн в активной к комбинационному рассеянию среде, в которой отсутствует инверсия населенностей актуальных колебательных уровней, происходит усиление волны с низшей частотой за счет ослабления волны с более высокой частотой. Этим процессом можно объяснить генерацию вынужденного стоксова излучения (но не вынужденного антйстоксова излучения). Из уравнения (4.22-4) следует, что при возбуждении плоской когерентной лазерной волной должна  [c.208]

Если молекула обладает несколькими активными в комбинационном рассеянии колебаниями, то наиболее быстро сформируется стоксова волна с наибольшим коэффициентом усиления, т. е. вообще образуется линия, для которой 1хл1 имеет максимальное значение. Согласно сказанному в 2.4, восприимчивость принимает наибольшие значения для тех колебаний молекулы, для которых наиболее велики значения отношения 1 к константе трения Гм- Именно таким колебаниям соответствуют самые интенсивные и узкие линии в спектре спонтанного комбинационного рассеяния. Во многих веществах стоксовы волны с наибольшим усилением успевают сильно уменьшить интенсивность лазерного света раньше, чем интенсивности других волн достигнут экспериментально наблюдаемых пределов. Поэтому в спектре появляются только линии, соответствующие одному колебательному переходу (см. разд. 4.213). Если обобщить проведенные в настоящем разделе расчеты на произвольные углы между направлениями распространения лазерной и стоксовой волн, то при возбуждении бесконечно протяженной плоской лазерной волной получится непрерывное угловое распределение вынужденного стоксова излучения, сходное с картиной при спонтанном комбинационном рассеянии. Если же стоксово излучение возбуждается пучком лазерного света с конечным поперечным сечением, то определяющая интенсивность стоксовой волны длина, на которой взаимо-  [c.211]


Мы постараемся произвести сравнение с классиче скими уравнениями движения также и для двухфотон ных процессов и перейдем для этой цели к случаю ко леблющейся молекулы, активной в комбинационном рассеянии. Для упрощения допустим", что все атомные системы находятся в основном состоянии и что в ходе процесса не происходит существенных изменений заселенностей, т. е. V/ = —V- Считая среду макроскопически изотропной и ограничиваясь одним направлением поля-  [c.263]


Смотреть страницы где упоминается термин Комбинационное рассеяние активно : [c.94]    [c.74]    [c.26]    [c.33]    [c.391]    [c.392]    [c.129]    [c.359]    [c.22]    [c.228]    [c.217]    [c.218]    [c.160]    [c.204]    [c.204]    [c.368]    [c.370]    [c.250]   
Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.368 ]



ПОИСК



Комбинационное рассеяние активно иа длинноволновых оптических

Комбинационное рассеяние активно молекулах

Комбинационное рассеяние активно обращенное

Комбинационное рассеяние активно спонтанное

Комбинационное рассеяние активно фоионах

Комбинационное рассеяние активно фонои-поляритонах

Комбинационное эхо

Рассеяние комбинационно



© 2025 Mash-xxl.info Реклама на сайте