Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическое поле вакуума

Здесь Ех — касательная составляющая вектора напряженности электрического поля, Dv = ,0, — нормальная составляющая вектора электрической индукции на поверхности 5" тела (звездочкой отмечены аналогичные величины для электрического поля вакуума).  [c.255]

Подчеркнём, однако, что среднее электрическое поле вакуумного состояния равно нулю. Мы можем интерпретировать только как эффективное электрическое поле вакуума  [c.332]


Первое слагаемое этого выражения, в соответствии со смыслом слагаемых в (19.3), выражает работу возбуждения электрического поля в вакууме, а второе слагаемое — это собственно работа поляризации диэлектрика. Поэтому если энергия электрического поля в вакуумированном объеме системы, V6 j8n,, считается входящей во внутреннюю энергию ее, т. е. U = - =U+V6 /8it, то работа электризации должна записываться в виде (19.1), если же этого добавления к U нет, то надо учитывать только чистую работу поляризации, т. е.  [c.160]

Фотоэлемент электронный — электронный электровакуумный прибор, в котором освобожденные из фотокатода под действием лучистой энергии электроны перемещаются в вакууме к аноду под действием электрического поля имеет малую чувствительность (порядка 100 мкА/лм), но обладает линейной световой характеристикой и очень большим дифференциальным сопротивлением [4].  [c.164]

Физическая величина, равная отношению модуля напряженности Во электрического поля в вакууме к модулю напряженности Е электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества  [c.143]

Уменьшение напряженности электрического поля в диэлектрике в е раз по сравнению с напряженностью поля в вакууме приводит к такому же уменьшению силы электростатического взаимодействия точечных электрических зарядов в диэлектрике. Поэтому закон Кулона для случая взаимодействия электрических зарядов в диэлектрике имеет вид  [c.143]

Ускорение частиц в циклотроне с постоянным периодом возможно лишь до значений скоростей, значительно меньших скорости света. С приближением скорости частицы, к скорости света в вакууме, равной с=300 ООО км/с, масса частицы возрастает, вследствие чего увеличивается период ее обращения в магнитном поле. Равенство периода обращения частицы и периода изменения электрического поля нарушается, ускорение прекращается.  [c.182]

На каком расстоянии от маленького заряженного шара напряженность электрического поля в воде с диэлектрической проницаемостью 81 будет такой же, как в вакууме на расстоянии 18 см от центра шара  [c.203]

Рассмотрим теперь связь между силой и ускорением в случае электрически заряженных тел, движущихся в электрических и магнитных полях например, рассмотрим электроны, движущиеся в электрическом поле без столкновений с молекулами или ионами газа, т. е. в вакууме.  [c.86]


Электрический ток смещения в вакууме — явление изменения электрического поля в вакууме.  [c.116]

Первое слагаемое в правой части (10.13 ) можно истолковать как работу возбуждения электрического поля в вакууме, второе — как работу против внешнего электрического поля, а третье — как работу поляризации в собственном смысле, когда внутренним параметром диэлектрика, сопряженным его внешнему параметру Е, является поляризованность Р. Аналогично, третье слагаемое в правой части (10.13") можно истолковать как работу поляризации в собственном смысле, когда D — внутренний параметр диэлектрика, сопряженный Е.  [c.188]

Первый член в этом выражении определяет работу на возбуждение электрического поля [ /(8п) — плотность энергии электрического поля в вакууме] второй член представляет собой работу поляризации в собственном смысле на единицу объема изотропного диэлектрика dW =—EdP.  [c.290]

Первое слагаемое в правой части (8.6 ) можно истолковать как работу возбуждения электрического поля в вакууме, второе — как работу против внешнего электрического поля, а третье — как работу поляризации в собственном смысле, когда внутренним параметром диэлектрика, сопряженным его внешнему параметру ё  [c.130]

Важнейшей эмиссионной характеристикой твердых тел является работа выхода еср (е — заряд электрона, Ф — потенциал), равная минимальной энергии, которая необходима для перемещения электрона с поверхности Ферми в теле в вакуум, в точку пространства, где напряженность электрического поля практически равна нулю [1]. Если отсчитывать потенциал от уровня, соответствующего покоящемуся электрону в вакууме, то ф— потенциал внутри кристалла, отвечающий уровню Ферми. Согласно современным представлениям в поверхностный потенциальный барьер, при преодолении которого и совершается работа выхода, основной вклад вносят обменные и корреляционные эффекты, а также — в меньшей степени — электрический двойной слой у поверхности тела. Наиболее распространенные методы экспериментального определения работы выхода — эмиссионные по температурной, спектральной или полевой зависимости соответственно термо- фото- или полевой эмиссии, а также по измерению контактной разности потенциалов между исследуемым телом и другим телом (анодом), работа выхода которого известна [I, 2]. В табл. 25.1, 25.3 и 25.4 приведены значения работы выхода простых веществ и некоторых соединений. Внешнее электрическое поле уменьшает работу выхода (эффект Шоттки). Если поверхность эмиттера однородна, то уменьшение работы выхода. эВ, при наложении электрического поля напряженностью В/см, равно  [c.567]

Полевая (туннельная, автоэлектронная) эмиссия (ПЭ) — испускание телами электронов под действием сильного внешнего электрического поля у их поверхности. Если внешнее электрическое поле достаточно велико для того, чтобы потенциальной порог на границе тела превратился в барьер конечной и малой ширины (ё Ю В/см), то становится возможным просачивание электронов сквозь барьер (квантовомеханическое туннелирование) и выход их в вакуум. При этом электроны непосредственно после прохождения сквозь барьер имеют ту же энергию, что и внутри тела, а электрическое поле совершает работу только на ускорение электронов в вакууме в межэлектродном промежутке между эмиттером  [c.587]

Для части поверхности 8 тела, на которой отсутствует электродное покрытие и которая граничит с воздухом (вакуумом), компоненты электрического поля удовлетворяют условиям (при отсутствии на 5" свободных электрических зарядов)  [c.255]

Электроизоляционные материалы, находясь в электрическом поле, обнаруживают способность к накоплению электрической энергии. Энергия w, накапливаемая в единице объема, пропорциональна квадрату напряженности поля Е, а также произведению диэлектрической проницаемости материала е и электрической постоянной вакуума.  [c.47]

В реальном диэлектрике, обладающем конечным электрическим сопротивлением, существуют как связанные, так и свободные заряды. Электрическое поле, создаваемое этими зарядами, существует в вакууме между молекулами вещества. Такой подход к описанию поля в диэлектрике, соответствующий классической электродинамике, позволяет использовать любые формулы, справедливые для электрического поля в вакууме, и для расчета поля в диэлектрике, добавляя к плотности зарядов величину рсв- Например, формула Гаусса для электрического поля в вакууме div Е — p/sg, а для электрического поля в диэлектрике  [c.138]


И наконец, в заключение этого параграфа мы обратимся к электромагнитному полю. Магнитная индукция В, напряженность магнитного поля Н, вектор электрической индукции D и напряженность электрического поля Б удовлетворяют в вакууме уравнениям  [c.215]

Здесь E (со) — вектор напряженности электрического поля электромагнитной (световой) волны — ее амплитуда i и j — единичные векторы осей х и у соответственно i — мнимая единица с — скорость распространения света в вакууме п и /г — зна-  [c.193]

Масса электрона m = 9,108-10 г. Находясь в вакууме и будучи помещен в электрическом поле, электрон свободно перемещается в направлении более высокого потенциала (от минуса к плюсу).  [c.360]

Электрическое поле вакуума 332 Электронная оптика 39 Энергия электромагнитного поля в резонаторе 303 Энтропия по Верлю 678 Эрмита полиномы, интегральное представление 87, 126  [c.756]

Электронный луч представляет собой сжатый поток электронов, перемещающийся с большой скоростью от катода к аноду в сильном электрическом поле. При соударении электронного потока с твердым телом более 99 % кинетической энергии электронов переходит в тепловую, расходуемую на нагрев этого тела. Температура в месте соударения может достигать 5000—6000 °С. Электронный луч образуется за счет эмиссии электронов с нагретого в вакууме 133 (10 -i-10 ) Па катода У и с помощью электростатических и элек-  [c.202]

При электрическом способе распыления (разд. 3.8) диэлектрических жидкостей в интенсивном электрическом поле образуются коллоидные частицы. Шульц и Брансон [690] показали, что диэлектрическую жидкость с очень низким давлением насыщенного пара, такую, как диоктилфталат (масло), можно распылять электростатическим способом в глубоком вакууме как заряженную ко.ллоидную струю. Для этого масло подают к острию иглы или кромке ножа при потенциале до -Ь20 кв. В обозрении Шульца и Виха [691] указывалось, что электростатическое давление Рд, под действием которого жидкость распыляется или разбрызгивается, определяется по уравнению (2.716)  [c.444]

Циклотрон. В этом ускорителе заряженные частицы — протоны, ядра атомов гелия — разгоняются переменным электрическим полем постоянной частоты в вакууме в зазоре между двумя металлическими электродами — дуантами. Дуанты находятся между полюсами постоянного электромагнита (рис. 188, а). Под действием магнитного поля внутри дуантов заряженные частицы движутся по окружности. К моменту времени, когда они совершают половину оборота и подходят к зазору между дуантами, направление вектора напряженности электрического поля между дуантами изменяется на противоположное и част1щы  [c.181]

Время пробега ионов. Пучок одновалентных ионов цезия s+ ускоряется, начиная от состояния покоя, электрическим полем в 1 СГСЭк/см, дей-. ствующим на расстоянии 0,33 см, и после этого проходит 1 мм за 87-10.- с в вакууме, где отсутствует электрическое поле.  [c.132]

Рис. 10.39. Принципиальная схема опыта по определению предельной скорости. Электроны ускоряются однородным полем в левой части прибора, а время их пробега между А и В определяется с помощью осциллоскопа. / — горячий катод 2 — однородное электрическое поле от ускорителя Ваи-де-Граафа 3 — сетка управления, действующая как затвор < —трубка, находящаяся под вакуумом 5 — электрическое поле отсутствует 6 — термопара 7 — алюминиевый диск 8 — осциллоскоп показывает импульсы, поступающие из точек А и В. Рис. 10.39. <a href="/info/4763">Принципиальная схема</a> опыта по <a href="/info/98192">определению предельной</a> скорости. Электроны ускоряются <a href="/info/19453">однородным полем</a> в левой части прибора, а время их пробега между А и В определяется с помощью осциллоскопа. / — горячий катод 2 — <a href="/info/12618">однородное электрическое поле</a> от ускорителя Ваи-де-Граафа 3 — сетка управления, действующая как затвор < —трубка, находящаяся под вакуумом 5 — <a href="/info/12803">электрическое поле</a> отсутствует 6 — термопара 7 — алюминиевый диск 8 — осциллоскоп показывает импульсы, поступающие из точек А и В.
Внутрь баллона, в котором создан вакуум, помещаются два электрода фотокатод К, изготовляемый из исследуемого материала, и анод А. Свет направляется на фотокатод через кварцевое окошко О. 5)лектроны, испущенные вследствие фотоэффекта (так называемые фотоэлектроны), перемещаются под действием электрического поля к аноду. Появление в цепи фототока регистрируется гальвапометро.м Г. Напряжение между фотокатодом и анодом изменяется потенциометром П, а измеряется вольтметром В.  [c.156]

Допустим, что амплитуда напряженности электрического поля в пучке постоянна по всему сечению. Показатель преломления в пространстве, занятом пучком, равен п = По + П2Е1. в результате дифракции пучок расширяется. Практически все направления лучей внутри пучка сосредоточатся в пределах конуса с углом при вершине 2вд ф, где 0диф= 1,22(Хо/ по)—дифракционный угол (см. 15.1) ко — длина волны в вакууме. Предельный угол 00 скольжения определяется соотношением  [c.309]

Электронная и ионная эмиссия — испускание электронов или ионов телами под влиянием внешних воздействий нагревания, потока фотонов, электронов, ионов или сильного электрического поля. В зависимости от характера внешнего воздействия различают соответственно термоэлектронную, термоионную, фотоэлектронную, вторичную электронную и вторичную ионную, электронноионную, ионно-электронную и полевую (иначе — туннельную или автоэлектронную) эмиссии. Во всех видах эмиссии. кроме полевой, роль внешних воздействий состоит в увеличении энергии части электронов или ионов тела до значения, позволяющего преодолеть действие сил. которые связывают их с телом, и выйти в вакуум или в другую среду. При ионной эмиссии эмитироваться могут как положительные, так и отрицательные ионы.  [c.567]

Боридный термокатод — катод на основе металлоподобных соединений типа МеВе, где iMe — щелочноземельный, редкоземельный металлы или торий. В качестве термокатода наиболее широко применяется гекса-борид лантана, реже — гексабориды иттрия и гадолиния и диборид хрома. Покрытие оксидного слоя тонкой пленкой осмия понижает работу выхода катода и увеличивает его эмиссионную способность. Термоэмиссионные катоды из гексаборида лантана работают при температуре 1650 К и обеспечивают получение плотности тока ТЭ до 50 А/см . Высокая механическая прочность и устойчивость таких катодов к ионной бомбардировке позволяет использовать их в режиме термополевой эмиссии (при напряженности внешнего электрического поля 10° В/см значительная часть эмиссионного тока обусловлена туннелированием электронов сквозь барьер). В этом режиме катод из гексаборида лантана при температуре 1400—1500 К может эмитировать ток с плотностью до 1000 A/ м . Катоды из гексаборида лантана не отравляются на воздухе и устойчиво работают в относительно плохом вакууме. Срок их службы не зависит от давления остаточных газов в приборе до давлений порядка 10 Па. Эти катоды используются в ускорителях и различных вакуумных устройствах.  [c.571]


Поляризационные явления в одноосных кристаллах. Оптическая ось одноосного кристалла характеризует направление, при распространении в котором луч света ведет себя как в изотропной среде, т. е. распространяется в среде П1ЭИ любой поляризации с одной и той же скоростью (при данной частоте). Однако при неколли-неарности луча и оси одноосного кристалла ситуация существенно изменяется. Через луч, направленный под углом к оптической оси, и оптическую ось можно провести плоскость, называемую главной (рис. 18). В этом направлении возможными являются лишь лучи света, вектор напряженности электрического поля которых колеблется либо в главной плоскости ( необыкновенный луч), либо перпендикулярно главной плоскости ( обыкновенный луч). Скорость необыкновенного луча зависит от угла между лучом и оптической осью скорость обыкновенного луча одинакова по всем направлениям (поэтому он и называется обыкновенным). Если луч света падает на плоскую поверхность одноосного кристалла, вырезанного параллельно оптической оси по нормали к поверхности (рис. 19), то в кристалле распространяются два пространственно совпадающих луча с взаимно перпендикулярными направлениями линейной поляризации. При угле падения, отличном от нуля (рис. 20), происходит преломление каждого из лучей в соответствии со скоростью распространения света в кристалле, т. е. при показателе преломления п = /v, где с-скорость света в вакууме, у-скорость света в кристалле. Поэтому после преломления обыкновенный и необыкновенный лучи имеют различные направления и начинают пространственно разделяться, т.е. падающий луч испытывает  [c.34]

Рентгеновское излучение. Рентгеновское излучение возникает при бомбардировке анода быстрыми электронами (рис. 25), ускоренными большой разностью потенциалов. Раскаленная металлическая нить Н испускает электроны (электроны термоэмиссии), которые, пройдя через сетку-катод С, попадают в ускоряющее электрическое поле между катодом С и анодом А. Из анода в результате удара в него электронов испускается рентгеновское излучение. Все это происходит в объеме с высоким вакуумом, показанном штриховой линией. В обычных условиях используются разности потенциалов порядка 100 кэВ. Однако имеются установки с использованием электронов с энергией в миллион электрон-вольт. Оно генерируется также в виде тормозного излучения в бетатронах и синхротронах (синхро-тронное излучение). Рентгеновское излучение является электромагнитным, длина волн которого заключена примерно между 10 и 0,001 нм. Однако такой взгляд на природу рентгеновского излучения возник не сразу. Рентген предполагал (1895), что открытые им лучи являются продольными световыми волнами, хотя и не настаивал на этом представлении. В принципе правильные представления на природу рентгеновских лучей высказал Стокс (1897). Он считал, что это электромагнитное излучение, которое возникает в результате торможения электрона при ударе о катод. Тормозящийся электрон эквивалентен переменному току, который, как это было уже известно из опытов Герца, генерирует электромагнитные волны.  [c.48]

Перейдем теперь к формулировке граничных условий в задачах электроупругости. Здесь необходимо различать условия для механических составляющих электроупругого поля и условия электростатики. Если же на поверхности электрического тела заданы внешние силы, то компоненты тензора механических напряжений должны удовлетворять условиям (1.3). Граничные условия, обусловленные наличием электрического поля, зависят существенно от способа возбуждения пьезоэлектрического тела, поверхность которого может быть покрыта тонкими проводящими электродами или граничить с вакуумом. Механическая деформация и возбуждение колебаний пьезоэлектрика осуществляется с помощью задания разности электрических потенциалов, созданной на части электроднрованной поверхности 5 тела. В этом случае выполняется условие  [c.255]

В заключение можно назвать основные направления развития пластометрических исследований на ближайшие годы 1) создание новых универсальных многоцелевых пластометров блочного типа, максимально близко моделирующих условия деформации различных процессов ОМД по температурно-скорост-ным условиям, законам развития деформации во времени и схемам напряженного состояния 2) разработка реологических моделей управления качеством металлопродукции для различных процессов ОМД на основе физических моделей течения металла в результате пластометрических исследований 3) соединение пластометрии с металлографией для анализа и контроля изменения структуры металла в процессе горячей деформации 4) проведение пластометрических исследований в особых условиях (вакуум, ультразвуковые, электрические поля и т. д.) 5) автоматизация пластометрических исследований при обработке опытных данных и управлении экспериментом создание автоматизированных комплексов типа пластометр — ЭВМ — графопостроитель или пластометр — УВМ — полупромышленное оборудование (прокатный стан, пресс, молот) 6) накопление, систематизация и формализация результатов пластометрических исследований с целью разработки подпрограмм Реология металлов в система- АСУ ТП и комплексных математических моделях различных процессов ОМД.  [c.68]

Ионное осаждение в вакууме отличается от предыдущего метода тем, что пары осаждаемого металла или сплава ионизируются в плазме тлеющего разряда, в котором катодом слум<ит испаряемый материал, а анодом — подложка. Нагрев производят различными методами. Пары металла попадают в плазму при сравнительно высоком давлении (0,1—1,0 Па) инертного газа (Не, Аг, Кг). При этом происходит ионизация паров, ионы ускоряются электрическим полем, поток ионов осаждается на подложке. Этот метод — разновидность плазменного напыления.  [c.140]


Смотреть страницы где упоминается термин Электрическое поле вакуума : [c.445]    [c.449]    [c.8]    [c.145]    [c.276]    [c.192]    [c.576]    [c.769]    [c.182]    [c.470]    [c.8]    [c.149]    [c.245]    [c.256]    [c.261]   
Квантовая оптика в фазовом пространстве (2005) -- [ c.332 ]



ПОИСК



Вакуум

Электрический ток в вакууме

Электрическое поле



© 2025 Mash-xxl.info Реклама на сайте