Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямолинейность-—Измерения 442 —Контроль

Шаброванные поверхности чаще всего контролируют с помощью поверочных плит по методу пятен на краску . Для доведенных поверхностей небольших размеров может быть, применен интерференционный метод контроля. В упрощенных измерениях контроль плоскостности заменяют контролем прямолинейности в двух  [c.416]

Прямозубые цилиндрические колёса — см. Зубчатые колеса цилиндрические прямозубые Прямолинейность — Измерения 442 — Контроль 466  [c.1086]


Прямозубые колеса — см. Зубчатые колеса прямозубые Прямолинейность — Измерение 32 — Контроль—Схема 49 - поверхностей большой протяженности — Проверка 33 Прямоугольные резьбы — см. Резьбы прямоугольные  [c.843]

Шаброванные поверхности чаще всего контролируют с помощью поверочных плит по методу пятен на краску . Для доведенных поверхностей небольших размеров может быть применен интерференционный метод контроля. В упрощенных измерениях контроль плоскостности заменяют контролем прямолинейности в двух взаимно перпендикулярных или нескольких направлениях, принимая за величину отклонения от плоскостности наибольшее измеренное значение отклонения от прямолинейности. Однако такой способ не гарантирует полного выявления отклонения формы, особенно при  [c.384]

При измерении отклонений от прямолинейности и плоскостности (рис, 8.23) используют поверочные линейки пли концевые меры /, с одинаковыми раз.мерами, на которые устанавливают поверочную линейку 2. При контроле отклонений от плоскостности для установки параллельности верхних плоскостей линеек 1 служит уровень 3. 196  [c.196]

Наиболее просто метод геодезического контроля планового положения подкрановых путей заключается в проверке прямолинейности одного из рельсов и измерении ширины колеи.  [c.11]

Для съемки подвесных путей в сложных условиях предложено специальное сидение (рис.6). Находясь в нем, исполнитель может перемещаться вдоль рельса и прикладывать к нему снизу через определенный интервал марку для контроля прямолинейности рельсовой оси, рейку для нивелирования или конец рулетки для измерения ширины колеи кранового пути. Наблюдатель с прибором располагается в неподвижно закрепленном сидении, а теодолит или нивелир устанавливается на специальной подставке.  [c.117]

Для контроля прямолинейности ездовых балок разбивают на полу цеха створ ВБ. Первый исполнитель, перемещаясь в люльке вдоль главной балки М, натягивает рулетку между точками / и / и измеряет ширину колеи. При этом один конец рулетки крепится к ездовой балке А с помощью специального магнитного замка, в то время как другой конец рулетки удерживается на ездовой балке Б. Это позволяет производить измерение ширины колеи одному человеку. Одновременно второй исполнитель устанавливает в точке Г прибор вертикального проектирования PZL и производит отсчет aj по натянутой рулетке. Затем кран - балка М перемещается к точкам 2-2 и действия исполнителей повторяются, то есть вновь измеряют ширину колеи и берут по рулетке отсчет. В такой последовательности работа выполняется на всем протяжении кранового пути с обязательным обеспечением мер безопасности.  [c.119]


Технологический процесс геодезического контроля подкрановых путей представляет совокупность приемов и способов получения и обработки информации о планово-высотном положении крановых рельсов. Он включает такие основные операции, как определение прямолинейности и горизонтальности рельсов и ширины колеи кранового пути обработку результатов измерений составление графической документации проектирование оптимального положения рельсов в плане и по высоте.  [c.132]

Измерение с высокой точностью уклонов плоских и цилиндрических поверхностей, а также контроль прямолинейности шаговым методом  [c.167]

Контроль с помощью оптической линейки. Для измерения прямолинейности плоскостей направляющих станков, поверочных линеек, плит, образующих валов и других деталей всех степеней точности по ГОСТ 10356—63 в настоящее время в СССР выпускаются оптические линейки (ИС-36 и ИС-43). Принципиальная схема оптической линейки приведена па рис. 73.  [c.172]

Измерение прямолинейности деталей по длине менее, чем трасса измерения линейки, возможно при применении специальных опор в виде домкратов. Для контроля-деталей, имеющих длину более этой трассы, прибор приходится последовательно переставлять вдоль трассы измерения, используя шаговый метод.  [c.173]

При такой схеме случайные перемещения детали по линии измерения. вызванные силами резания или тепловыми явлениями, не влияют на результаты контроля. Влияние перемещений детали перпендикулярно линии измерения в значительной степени устраняется за счет параллельности измерительных наконечников. Двухконтактные скобы с помощью подводящего устройства 8 обычно крепят на столе станка и контролируют деталь в одном сечении. Прямолинейная траектория ввода и вывода устройства позволяет наиболее просто автоматизировать эту операцию.  [c.131]

Использование радиоэлектроники, рентгенотехники и других достижений высшей техники дает возможность совершенствовать в дальнейшем методы контроля собранных машин. Вот один из примеров. Чтобы проверить обычными методами прямолинейность осей прецизионного токарного станка, приходится затратить несколько часов работы. Использование же для этого специального лазерного устройства позволяет проделать контрольные операции за несколько минут. Лазерное устройство вставляют в заднюю бабку станка и все измерения ведут по его лучу. Достигаемая точность составляет 0,2 угловой секунды или 0,015 мм на 25 м.  [c.606]

Контроль штифтов (фиг. 6) заключается в измерении угла конуса а°, наименьшего диаметра d, наибольшего диаметра dx, расчетной длины конуса по образующей I, прямолинейности образующей конуса.  [c.206]

Контроль прямолинейности образующих производится линейкой с определением просвета между линейкой и проверяемой поверхностью на-глаз (по эталонам просвета) или щупом. Дополнительно после проверки линейкой бочкообразность и вогнутость могут контролироваться измерением диаметров в крайних и средних сечениях.  [c.28]

Прибор для контроля профиля червячных фрез л червяков Миниметра— о,оса мм о гзо мм 150 мм — мсс Измерение прямолинейности профиля насадных червячных фрез и червяков 1. Комплект установочных концевых мер 2. Комплект установочных шаблонов + + — —  [c.660]

Лазерные интерферометры могут применяться также для измерения углов, контроля прямолинейности, плоскостности, перпендикулярности. Двухчастотным интерферометром можно обеспечить измерение отклонения от прямолинейности и перпендикулярности с погрешностью не хуже 0,5 мкм/м, а измерение углов наклона — не хуже 0,1" [167].  [c.248]

Внешний осмотр и измерения производят невооруженным глазом или с применением лупы с увеличением до 10-кратного при этом необходимо применение переносного источника света, специального инструмента или шаблона для контроля швов. По результатам внешнего осмотра и измерений составляют карту измерений, на которой фиксируют отклонения от прямолинейности образующей корпуса барабана котла, сосуда и овальность в сечениях, отстоящих друг от друга на расстоянии не более 2000 мм.  [c.586]


Общий принцип контроля сводится к точной фиксации поворотов (обычно кратных 2-п ) вращающегося звена и измерению соответствующих им перемещений прямолинейно поступательно движущегося звена.  [c.641]

Для контроля перпендикулярности обрабатываемых поверхностей к базовой поверхности в отдельных случаях на крупных деталях используют шпиндель расточного станка, оснащенный индикатором (см. рис. 260). Однако при значительном выдвижении шпинделя его прогиб от собственного веса сказывается на точности измерений, поэтому в этом случае применяют точные уровни, имея в виду, что базовая и контролируемая поверхности заранее проверены и прямолинейны.  [c.443]

Бесшкальные инструменты. К ним относятся лекальные и поверочные линейки (ГОСТ 8026—75), предназначенные для контроля отклонений от прямолинейности на просвет или посредством щупа с собственным отклонением от прямолинейности от 0,6 (класс 0 50 мм) до 3 мкм (класс 1 500 мм) синусные линейки (ГОСТ 4046—80) для косвенных измерений наружных углов до 45° с погрешностью от +5" до 15" шаблоны с выпуклым и вогнутым радиусами (ГОСТ 4126—82) для контроля на просвет с предельными отклонениями от +20 до +40 мкм щупы (ГОСТ 882—75) для контроля зазоров по вхождению лезвий разных толщин угольники поверочные 90° (ГОСТ 3749—77) для контроля прямых углов на просвет поверочные плиты (ГОСТ 10905—86) для контроля отклонений от плоскостности по краске образцы шероховатости поверхности (ГОСТ 9378—75) для визуального контроля шероховатости поверхности деталей.  [c.201]

Отклонение формы измеряется как на специальных измерительных приборах, так и на приспособлениях с использованием универсальных средств измерений. Специальные средства измерений, как правило, обеспечивают высокую точность. К таким средствам относятся кругломеры. Радиальная погрешность кругломера 1-го класса равна 0,05 мкм, а 5-го класса — 0,8 мкм. Некоторые типы кругл ом еров позволяют измерять отклонение от прямолинейности образующей. Аналогичные приборы имеются и для контроля отклонений от прямолинейности плоских поверхностей.  [c.397]

Для контроля качества прямолинейности поверхности применяют специальные кварцевые плоско-параллельные стекла, используя при измерении принцип интерференции света.  [c.646]

Методика выявления дефектов уплотнительных поверхностей и деталей разъемных соединений включает методы контроля (визуальный и инструментальный) контролируемые параметры уплотнительных поверхностей и деталей узла уплотнения (отклонение формы уплотнительных поверхностей - некруглость, прямолинейность образующей уплотнительной поверхности, угол наклона уплотнительной поверхности к оси сосуда, трещины на уплотнительных поверхностях и на резьбовой и гладкой частях крепежных шпилек, дефекты уплотнительных поверхностей механического и коррозионного происхождения резьба шпилек и гаек основного крепежа - размеры, механические повреждения, коррозия, шероховатость) методы проведения и средства измерений контролируемых параметров деталей разъемных соединений.  [c.81]

В зависимости от эксплуатационного назначения стандарты устанавливают два типа профилографов и профилометров А — для измерения параметров номинально-прямолинейных профилей Б — для измерения параметров одной или нескольких номинально-непрямолинейных форм или для измерения относительно вспомогательной плоской направляющей поверхности. В зависимости от параметров метрологических характеристик профилографы и профилометры каждого типа делятся на две группы I—для исследовательских работ и лабораторных измерений повышенной точности И—для измерения в процессе послеоперационного контроля. В зависимости от числовых значений нормируемых метрологических характеристик стандартами установлены три степени точности 1, 2 и 3. -  [c.652]

Для контроля отклонения от прямолинейности образующих длиной до 150 мм наружных и внутренних поверхностей различных деталей массой до 8 кг предназначен прибор БВ-6065. В приборе в качестве образцовой прямой используется траектория перемещения каретки аэростатического столика, движущейся относительно опоры на воздушной подушке. Диапазон измерения по отсчетному устройству с ценой деления 0,2 мкм в зависимости от используемого щупа составляет 20 или 10 мкм, а при записи профилограммы — 16 или 8 мкм.  [c.473]

Для контроля отклонения от прямолинейности вертикальных поверхностей и их отклонения от перпендикулярности относительно базовой плоскости предназначен прибор БВ-6129. Диапазон измерения по высоте 90 — 540 мм. Наибольший ход измерительной каретки 450 мм. В приборе можно устанавливать различные головки, в том числе и индук-  [c.473]

Контроль отклонений от правильной формы сводится к измерению овальности, бочкообразности, вогнутости, изогнутости оси и конусности в цилиндрических деталях в плоских — к определению прямолинейности и плоскостности. Методы контроля не отличаются от общепринятых в машиностроении.  [c.77]

Измерение шероховатости поверхности. Качественный контроль шероховатости поверхности осуществляют путем сравнения с образцами или образцовыми деталями визуально или на ощупь. ГОСТ 9378—75 устанавливает образцы шероховатости, полученные механической обработкой, снятием позитивных отпечатков гальванопластикой или нанесением покрытий на пластмассовые отпечатки. Наборы или отдельные образцы имеют прямолинейные, дугообразные или перекрещивающиеся дугообразные расположения неровностей поверхности. На каждом образце указаны значение параметра Ra (в мкм) и вид обработки образца. Визуально можно удовлетворительно оценить поверхности с Ra = 0,6. .. 0,8 мкм и более. Для повышения точности используют щуны и микроскопы сравнения, например, типа МС-48.  [c.199]


На рис.9 показаны простые приспособления для бокового нивелирования подкрановых рельсов при контроле их прямолинейности путем измерения отрезков о, от визирного луча или иного створа до оси рельса. Для этого В.Н.Соустин [40] предложил использовать половину стандартной нивелирной рейки 1 со специальным контактным устройством на ее пятке (рис.9, а). Оно представляет собой шаблон 2 с шурупами 3, упирающимися в боковую грань головки рельса 5. Отсчеты по рейке берут по вертикальной нити сетки 4, поворачивая рейку черной и красной стороной. Следует заметить, что точечный контакт рейки с рельсом может отрицательно сказаться на точности измерений вследствие коррозии или иных нарушений его боковой грани.  [c.27]

При контроле прямолинейности может возникнуть задача восстановления направления непросматриваемого створа (рнс.22) с целью приведения результатов периодических измерений к единой системе отсчетов. Для этого можно воспользоваться предложенным в работе [43] способом, сущность которого заключается в построении вспомог ательного створа А/В/, примерно параллельного перекрытому створу АВ. От этого створа измеряют расстояния 01,02, аз, а4 до крайних точек сгвора и двух вспомогательных точек О и С, расположенных по обе стороны препятствия (например, крана) и находящихся примерно но направлению перекрытого створа. От линий АО и ВС измеряют абциссы ( = , р,] = г,п ) до  [c.47]

Координатная марка 7 с цилиндрическим уровнем 8 служит для одновременного, с измерением ширины колеи, нивелирования рельса и контроля его прямолинейности. Для этого в конце рельса на специальном штативе устанавливают нивелир и центрируют его по оси рельса. Приводят визирную ось в горизонтальное положение и визируют на марку 7, установленную в другом конце рельса. Перемещают марку по вертикали до получения нулевого отсчета по ее вертикальной шкале и наводят вертикальную нить сетки на нуль юризонтальной шкалы марки. Последовательно перемещая кран в контрольные точки, измеряют ширину колеи и берут отсчеты по марке 7, которые будут соответствовать превышениям и отклонениям оси рельса от прямой линии. Затем в обратном порядке производят нивелирование второго рельса, устанавливая на нем стойку с маркой 7. Отклонения оси второго рельса от прямой линии вычисляют известным способом.  [c.69]

Разработанный нами способ (Шеховцов Г.А., Новиков В.М. Трособлочный способ контроля ширины колеи и прямолинейности подкрановых путей Ииформ. листок. Нижний Новгород, 1994 /Нижегородский ЦНТИ, N 174-94) предназначен для одновременного определения ширины колеи и непрямолинейности крановых рельсов, недоступных для непосредственных измерений.  [c.123]

Контроль методо визирования. Кроме автоколлимационного метода, для контроля отклонений от прямолинейности и плоскостности поверхностей большой протяженностью (до 40—50 м) получил применение метод визирования . Этот метод основан на том, что на контролируемой поверхности располагают освещенную визирную марку, представляющую собой стеклянную пластинку, на которой нанесены концентрические окружности и два взаимно перпендикулярных двойных штриха. Визирная марка смонтирована на подставке. С помощью объектива зрительной трубы, неподвижно установленной на конце контролируемой поверхности или вне ее, изображение марки проектируется в плоскость сетки трубы. В окуляре этой трубь наблюдают одновременно изображение марки и сетку зрительной трубы. Если при передвижении марки вдоль контролируемой поверхности из-за неплоско-сгности этой поверхности произойдет смещение штрихов марки относительно оси трубы в плоскости, перпендикулярной направлению визирования, то величина этого смещения определяется с помощью отсчетных устройств зрительной трубы. Предварительно — перед началом измерения регулируют взаимное положение марки и трубы, располагая марку в двух крайних положениях контролируемой поверхности, с тем чтобы при контроле этой поверхности смещения марки при ее последовательном перемещении от участка к участку находились бы в пределах поля зрения зрительной трубы.  [c.176]

Профилографы и профилометры выпускаются двух типов А — для номинально-прямолинейных профилей, Б — для номинально-непрямолинейных профилей. Каждый тип делится на две группы — для исследовательских работ и лабораторных измерений иовышенной точности II—для измерений в процессе послеоперационного контроля.  [c.345]

Наряду с названными средствами для контроля прямолинейности применяют следующие методы измерение уровнем, оитическио методы измеренпя (коллимационные и автоколлимационные) и др.  [c.513]

Некоторые типы кругломеров позволяют измерять отклонение от прямолинейности образующей. Аналогичные приборы имеются и для контроля отклонения от прямолинейности плоских поверхностей. Для контроля овальности, огранки, конусообразности, бочкообраз-ности, седлообразности, выпуклости, вогнутости можно использовать универсальные средства измерений, в частности, с использованием показывающих приборов с двумя индуктивными преобразователями (см. табл. 2), позволяющими автоматически определять разность диаметров или разность отклонений от установленной плоскости в двух точках.  [c.24]

Проекционно-визирный метод контроля выполняется универсальным или инструментальным микроскопом. С помощью этих приборов можно измерить прямолинейные отрезки профиля шаблонов, углы, образованные отрезками с базовыми гранями и между собой, определять координаты центров дуг окружностей, входяш их в измеряемый профиль, и размеры радиусов этих дуг. На универсальном микроскопе удобно проверять профиль шаблонов, заданный в системе прямоугольных координат. В этом случае даже сложный контур может быть проверен точно и быстро. Этим методом пользуются особенно в тех случаях, когда в профиль шаблона входят более сложные кривые, чем дуги окружностей, например парабола, эвольвента, спираль и пр. Вообще измерение таких криволингейных участков, как правило, осуществляется по точкам в системе прямоугольных или полярных координат.  [c.200]

Контроль износа по передней поверхности оптическими методами представляет большие трудности. С учетом вышеизложенного, для регастрации износа. всех участков (по передней и задней поверхностям размерный износ) был разработан стенд контроля износа, В оанову принципа работы стенда положен контактный метод измерения. Для записи профиля износа по передней поверхности использовали игольчатый щуп, а при записи износа по задним поверхностям — ровное прямолинейное лезвие, направление которого совпадает с вектором скорости резания.  [c.61]

Окончательный контроль обработанных клапанов может производиться на специальном автомате конструкции НИИтракторосельхозыаш. Автомат контролирует прямолинейность стержня, биение конусной выточки стержня, конуса тарелки и торца стержня. Для измерения на автомате клапан по специальному лотку подают на измерительную позицию (фиг. 3), где в призмах 1 он приводится во вращение  [c.229]


Смотреть страницы где упоминается термин Прямолинейность-—Измерения 442 —Контроль : [c.174]    [c.197]    [c.8]    [c.236]    [c.733]    [c.433]    [c.474]   
Справочник машиностроителя Том 3 (1951) -- [ c.466 ]



ПОИСК



309 — Прямолинейность

Измерения прямолинейности

Контроль измерением

Прямолинейность — Измерени

Прямолинейность — Контроль



© 2025 Mash-xxl.info Реклама на сайте