Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концевые меры

Отклонение от параллельности осей и межцентровое расстояние А (рис. 12.8, б) проверяют измерением расстояний между внутренними образующими контрольных оправок (размеры а, и Ог) при помощи индикаторного нутромера, штихмаса или блока концевых мер, либо расстояний между внешними образующими контрольных оправок mi и при помощи микрометра или штангенциркуля. Зная диаметры оправок di, и d , рассчитывают межцентровое расстояние.  [c.183]


Назначение квалитетов и классов точности Для концевых мер длины Для калибров и особо точных размеров  [c.56]

Их используют рабочие и контролеры ОТК завода-изготовителя. В качестве приемных и контрольных используют частично изношенные калибры ПР и новые калибры НЕ. Приемные калибры (проходной I—ПР и непроходной П—НЕ) применяют для приемки деталей представителями заказчика. Как правило, приемными калибрами служат изношенные проходные и новые непроходные рабочие калибры. Это. желается для того, чтобы не браковать детали, правильно изготовленные и принятые по рабочим калибрам. В системах допусков и посадок ИСО и СЭВ приемные калибры не предусмотрены, но могут быть введены отраслевыми стандартами. Контрольные калибры (К—И) имеют форму шайб, являются непроходными и служат для контроля и изъятия из эксплуатации изношенных проходных рабочих калибров-скоб, а также для настройки регулируемых калибров-скоб. Несмотря на небольшие допуски, контрольные калибры не обеспечивают должной точности проверки и вместо них лучше использовать концевые меры дайны или универсальные измерительные приборы.  [c.82]

Концевые меры длины. Штриховые инструменты. Рычажно-механические и рычажно-оптические приборы  [c.116]

Ролики устанавливают с помощью блоков концевых мер на определенной высоте h. Предельные размеры измерительных роликов и ЕЬ СОту h подсчитывают в зависимости от заданного на чертеже предельного отклонения угла контролируемой детали Аа.  [c.173]

Измерительные ролики и измерительные шарики используют также для контроля наружных и внутренних конусов. На рис. 14.4, а и б показано измерение наружного конуса. Сначала измеряют размер li по диаметрам роликов 3. Затем под ролики подкладывают блоки из концевых мер 4 одинаковой высоты h и определяют размер (рис. 14.4, б). Зная размеры /г, И, / ., находят конусность по формуле  [c.173]

Изложите основные сведения о концевых мерах.  [c.73]

Концевые меры длины  [c.221]

При измерении отклонений от прямолинейности и плоскостности (рис, 8.23) используют поверочные линейки пли концевые меры /, с одинаковыми раз.мерами, на которые устанавливают поверочную линейку 2. При контроле отклонений от плоскостности для установки параллельности верхних плоскостей линеек 1 служит уровень 3. 196  [c.196]

Длина концевой меры в мм Допустимые отклонения в мкм  [c.145]

Для достижения такой точности при изготовлении концевых мер и проверки их применяют интерференционные методы. Существует много разновидностей этих методов, сущность которых сводится к осуществлению интерферометра типа Майкельсона или  [c.145]


Фабри—Перо, одной из отражающих поверхностей которого является поверхность исследуемой концевой меры, а толщина концевой меры определяет расстояние до второй отражающей поверхности (иногда вводятся еще дополнительные зеркала). Существуют разнообразные интерференционные компараторы этого рода, приспособленные для сравнения длин двух концевых мер или для абсолютного определения их. Компараторы такого рода, применяемые в лучших государственных метрологических лабораториях, позволяют определять меры до 100 мм с ошибкой от 0,010 до 0,005 мкм и меры до 1000 мм с ошибкой от 0,1 до 0,05 мкм.  [c.146]

Однозначные меры воспроизводят физические величины только одного размера. Физические величины, для которых операция сложения может быть выполнена без затруднений, воспроизводятся наборами мер или магазинами. Примеры наборов мер наборы гирь, набор концевых мер длины, набор мер индуктивности и т. п. В магазинах, в отличие от наборов, меры объединяются в одно устройство, имеющее переключатели и отсчетные устройства.  [c.104]

В зависимости от числа а единиц допуска I в допуске 1Т стандартом установлено 19 квалитетов (классов) точности 01, о, 1, 2, 3, 4, 5,. .., 17. При этом допуски в ква-литетах 01,. .., 4 предназначены для концевых мер длины, калибров, измерительных инструментов и др. квалитеты 5,. .., 13 дают допуски для сопрягаемых размеров деталей, а в ква-литетах 14,. .., 17 даются допуски для несопрягаемых (свободных) размеров.  [c.280]

Освоила такие сложные виды поверки, как поверка концевых мер длины на интерферометре, оптико-механических приборов. Постоянно участвовала в региональных конкурсах метрологов, в которых неоднократно занимала призовые места. Награждена орденом Трудового Красного Знамени, Почетной грамотой Госстандарта.  [c.93]

ДИП-3, измерительный комплекс для поверки концевых мер длины, позволяющий полностью автоматизировать обработку результатов измерений и тд. Используются эталоны линейно-угловых измерений - 24-гранная призма второго разряда, штриховая мера первого разряда, эталонные кольца второго разряда, концевые меры первого разряда, комплекты концевых мер второго разряда и др.  [c.95]

Освоена поверка концевых мер длины на измерительном комплексе Микрон-02 с полной автоматизацией обработки и оформления результатов поверки.  [c.95]

Метод срависии.ч с мерой — метод из,мерений, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например (рис, 9.1), для измерения вывозы /. деталей 1 миниметр 2 закрепляют в стойке плиты, Слд. слку миниметра устанав-лквают на нуль по како.му-либо образцу (набору концевых мер) 3, имеющему высоту N, равную номинальной высоте L измеряемых д(Л алей. Затем приступают к измерению партии деталей. О точности размеров L судят по отклонению б стрелки миниметра относительно нулевого поло-Рис. 9.1. Относительное измерение жения,  [c.110]

Плоскопараллелы[ые концевые меры длины являются ссиовпым средством обеспечения единства мер в машино- и приборостроении. Они служат для передачи линейного размера от эталонного метра до  [c.116]

На массивном чугунном основании 15 в двух взаимпоперпендику-лярных направлениях на шариковых направляющих перемещается измерительный стол 2. Перемещение стола осуществляется двумя микрометрическими винтами I с ценой деления 0,005 мм и пределами измерения 0—2.5 мм. Пределы измерения микроскопа можно значительно расширить за счет установкн концевых. мер длины соответствующего размера, кратного 25 мм, между микровиптом и измерительным упором на столе микроскопа. Таким образом, пределы измерения увеличивают в продольном направлении до 75 мм у микроскопа ММИ и до 150 мм у микроскопа БМИ. Для отсчета перемещении на гильзе, скрепленной с микрометрической гайкой, имеется миллиметровая шкала / (рис. 10.17, н), а на барабане, связанном с микрометрическим винтом, круговая шкала П с 200 делениями. Так как шаг винта равен 1 мм, то цена деления шкалы барабана составит 1/200 — 0,005 мм (например, на рис. 10.17, в показание микрометра равно 24,025 мм).  [c.130]

Контроль углов угольниками. По ГОСТ 3749—65 угольники выпускают шести типов (рис. 14.2). Контроль углов с помощью угольников осуществляют путем оценки п[)освета между угольником и контролируемой деталью. Просвет оценивают на глаз или сравнением с образцовой щелью, созданной при помощи концевых мер длины и лекальной лииейкн. При пользовании крупными угольниками просвет оценивают с помощью щупов. Для подсчета угловых отклонений по результатам измерения зазора щупом можно пользоваться зависи-  [c.171]


Тригонометрические или косвенные измерения углов сводятся к измерению прямолинейных озрезков с последующим определением искомого угла из трнгономеарических соотношений. Используются специальные приборы и всевозможные измерительные приспособления различной конструкции с концевыми мерами, линейками, контрольными шайбами и конусами.  [c.172]

Для измерения углов и конусов часто используют синусную линейку (рис. 14.5). Она представляет собой стальной столик 2 с двумя прикрепленными к нему цилиндрическими роликами одинакового диаметра. Ролики установлены на строго определенном расстоянии одни от другого, обычно 100 мм или 200 мм между центрами рол1гков. Столик 2 устанавливают на проверочной плите 3 под заданным утлом с помонцно блока 4 концевых мер. Зависимость между размером блока плиток h и углом наклона а синусной линейки определяют из соотношения  [c.174]

При совместном вращении зубчатых колес погрешности проверяемого зубчатого клеса вызывают изменения измерительного межосевого расстояния а, которые можно определить по шкале индикатора I или фиксировать на диаграмме, для чего устанавливают индуктивный датчик и самописец. Номинальное межоссвое расстояние а устанавливают по набору концевых мер или с помощью специальных дисков, насаживаемых на оправки. На подвижной каретке можно монтировать сменные узлы и приспосабливать прибор для контроля конических (рис. 17.1, 6 ), винтовых или червячных колес, червяков, а также зубчатых колес с внутренним зацеплением.  [c.210]

Шагомеры для проверки шага зацепления (основного шага) Погрешности шага зацепления оказывают значительное влияние на плавность работы передач и на полноту контакта зубьев. Для проверки шага зацепления применяют специальные приборы — шагомеры, которые по виду контакта с измеряемыми поверхностями подразделяют на шагомеры с плоскими (тангенциальными) и кромочными измерительными наконечниками. Основное применение имеют шагомеры о тангенциальными (плоскими) наконечниками (рис. 17.2). Шаг зацепления измеряют неподвижным наконечником 1 и подвижным 2. Номинальное значение шага зацепления между измерительными плоскостями наконечников 7 и 2 устанавливают по блоку илоскопараллель-ных концевых мер или по эталону, передвигая с помощью винта 3 подвижную планку 4. К планке 4 наконечник 2 прикреплен шарнирно. Винты 5 фиксируют планку 4. Упор 6 совместно с неподвижным наконечником 1 служит для установки и фиксации прибора На зубчатом колесе. Погрешности шага зацепления вызывают повороты подвижного наконечника 2, которые передаются стрелке индикатора.  [c.211]

Плоскопараллельиые концевые меры длннь (ГОСТ 9038-73). Основной набор включает 83 плитки следующих размеров, мм 1,005-1 шт. 1,01. . 1,49 (через 0,01 мм) -49 шт., 1,6,  [c.69]

Меры — средства измерений, иредиазначенные для воспроизведении заданного размера физичео ой величины. В технике часто используют наборы мер, например, гирь, плоскопараллельных концевых мер длины (плиток), конденсаторов и т. п.  [c.110]

При дифференциальном методе измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на ноль по блоку концевых мер длины. Нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Подобным методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием. При методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют используя совпадения отметок шкал или периодических сигналов (например, при измерении штангенциркулем используют совпадение отметок основной и ноннусной шкал). Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала). Комплексный метод характеризуется измерением суммарного noi asa-теля качества, на который оказывают влияния отделыгые его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др. контроль положения профиля по предельным контурам и т. п.).  [c.111]

Внешний вид и оптическая схема оптиметров со шкалой, проецируемой на экран, приведены на рнс. 5,8. Луч Beia от источника 1 через конденсор 2, теплофильтр 3, линзу 4 и призму 5 освещает нанесенную на пластине 6 шкалу с 200-.мн ( 100) делениями. Через зеркало 7, объектив 8 и зеркало 9 шкала проецируется на поворотное зеркало W, связанное с измерительным наконечником ИН. Отразившись от зеркала 10, изображение шкалы снова проецируется на другую половину пластины 6 с нанесенным неподвижным штрихом-указателем. С помощью объектива 13 и зеркал 12, 11 14 изображение шкалы с указателем проецируется на экран 15. Даже при больших передаточных отношениях прибор весьма компактный. Согласно ГОСТ 5405—75 выпускают оптиметры с окулярол (тип ОВО) или проекционным (тип ОВЭ) экраном для вертикальных или горизонтальных измерений. Диапазон показаний шкал трубок оптиметров 0,1 или 0,025 мм, пределы измерений О—180 мм (у горизонтальных О—350 мм), измерительное усилие 0,5—2,0 Н, погрешность измерений от 0,07 до +0,3 мкм. Малые диапазоны показаний по шкалам позволяют применять оптиметры в основном для сравнительных измерений с использованием концевых мер длины (см. рис. 5.1).  [c.121]

Интерферометры. Устройства, в которых для измерений использовано явление интерференции света, относятся к наиболее точным. Их применяют для аттестации концевых мер, калибров и образцовых деталей, В сочетании с лазерными источниками света они позволяют регистрировать изменение длины до 10" м. Промышленные интерферометры имеют окулярное, экранное или цифровое отсчетное устройство. Интерферометры выпускают в виде двух модификаций — для вертикальных (мод, 264) и горизонтальных (мод. 273) измерешиг Контактные иитер41ерометры имеют переменную цену деления (от 0,05 до 0,2 мкм) и основаны на схеме Майкельсона (рис. 5.11). В таких интерферометрах свет от источника 2 через конденсор 3 и свето-124  [c.124]


Особенно тесная связь между указанными процессами суш,ествует при книематическом копировании, например при получении эволь-вентных, спиральных и винтовых поверхностей методом обкатки, контроле зубчатого колеса в однопрофильном зацеплении с точным образцовым колесом, контроле копира 1 сравнением его g профилем образцового копира 2 (рис. 6.4) и т. д. Так, при контроле крепежных резьб важным и обоснованным показателем является их свинчивае-мость с контрдеталью, а при контроле кинематических резьб важно обеспечить одностороннее силовое замыкание. Для рассортировки шариков подшипников по диаметру используют клиновой калибр (рис. 6.5), выполненный в виде двух расходяш ихся под углом 2а линеек. Существует два метода его настройки по образцовым шарам (расположенным в сечениях —А и Л,—с заданными диаметрами d и D) и по блокам концевых мер длины. При настройке необходимо вводить поправки на размеры блоков, так как геометрия и материал этих образцов отличны от геометрии и материала контролируемых деталей, а следовательно, различны положение точек соприкосновения С G линейками и смятие соприкасающихся поверхностей.  [c.141]

Измерение отклонений формы. Отклонения формы определяют с помощью универсальных н специальных средств измерения, При этом используют поверочные чугунные плиты и плпты из твердых каменных пород (ГОСТ 10905—75), поверочные линейки типов ЛЧ, ЛТ, ЛД, ШП, ШПХ, ШД, УТ, ШМ (ГОСТ 8026—75), угольники типа УЛ, УЛП, УЛЦ, УП, УШ (ГОСТ 3749—77), призмы (ГОСТ 5641—82), плоскопараллельные концевые меры длины (ГОСТ 9038—83), уровни (ГОСТ 3059—75), натянутые струны и оитпко-механические приборы, в которых роль образцово прямой выполняет луч света.  [c.196]

В настоящее время не только научные, но и технические измерения требуют определения длин с очень большой точностью. В качестве образцов (эталонов) для измерения длин с большой точностью применяются так называемые концевые меры, или плитки Иогансона, представляющие собой стальные пластинки различной толщины, противоположные поверхности которых превосходно отполированы и сделаны строго плоскими и параллельными друг другу. Имея набор таких плиток, можно, плотно прижимая (притирая) их друг к другу, составлять комбинации различной длины, определенные с очень большой точностью, о которой дают представление следующие цифры  [c.145]

ОТ Дюнкерка до Барселоны. После завершения этих работ был изготовлен платиновый прототип (эталон) метра в виде концевой меры. Оп представлял собой линейку шириной 25 мм, го шцнюй около 4 мм с расстоянием между концами (отсюда название ко1 цевая мера ), равным 1 м. По месту своего хранения (Национальный архив Франции) этот эталон метра вноследствии получил название архивный метр .  [c.39]

Широкое распространение при оценке величины износа методом микрометрии получили концевые мер ,1 длин1, , микрометры, индикаторные нутромеры, рычажные скобы, рычажно-оптические и рычажно-механические приборы, инструментальные и универсальные микро-скопьг Концевые меры длины имеют форму прямоугольного параллелепипеда или прямого круглого цилиндра с двумя плоскими параллельными измерительными поверхностями. Комплект концевых мер состоит из элементов с различными размерами - от I до 1000 мм с интервалом  [c.199]

Много лет проработавшая в отделе Анна Петровна Глумова до прихода сюда работала на очень крупном предприятии республики - УМПО. По ее воспоминаниям, когда она в 1947 году переступила порог лаборатории линей-но-угловых измерений, была очень удивлена ее слабой оснащенностью. Тогда в лаборатории был один набор образцовых концевых мер длины, один вертикальный оптиметр, микроскоп малой модели, поверочная плита 200х 200 мм. Да и специалистов было совсем немного в каждой лаборатории, кроме механической, работало по три-четыре человека.  [c.93]

В настоящее время в отделе поверяются эталоны и рабочие средства измерений для предприятий республики концевые меры длины, угловые меры, оптико-механические приборы, универсальный инструмент, средства неразрушающего контроля. Для применения в сфере торговых операций и взаиморасчетов поверяются брусковые метры, рулетки, планиметры, метрошто-ки, машины для измерения текстильного полотна. Большой объем выполняемых работ приходится на геодезические приборы (нивелиры, теодолиты, тахеометры).  [c.95]


Смотреть страницы где упоминается термин Концевые меры : [c.229]    [c.116]    [c.116]    [c.117]    [c.120]    [c.123]    [c.126]    [c.214]    [c.69]    [c.116]    [c.241]   
Смотреть главы в:

Справочник по технике линейных измерений  -> Концевые меры


Справочник машиностроителя Том 4 (1956) -- [ c.7 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.4 , c.7 ]

Техническая энциклопедия Т 10 (1931) -- [ c.0 , c.7 ]



ПОИСК



35 Зак концевые

Концевые (линейные) и угловые меры

Концевые меры длины Штриховые инструменты Рычажно-механические и рычажно-оптические приборы

Концевые меры длины для измерения калибров

Концевые меры длины для проверки измерительных

Концевые меры длины и их поверка

Концевые меры длины и калибры (Л. Л. Марков)

Концевые меры длины средств

Концевые меры длины — Материал

Концевые меры длины — Материал трения

Концевые меры длины — Материал усеченные — Поверхность боковая—Центр тяжести 152 Поверхность и объем —Расчет

Концевые меры длины. Калибры и простейшие измерительные инструменты

Концевые меры длины. Угловые меры

Концевые меры длины. Штриховые инструменты. Рычажномеханические и рычажно-оптические приборы

Концевые меры длины. Штриховые, рычажно-механические и рычажно-оптические приборы

Концевые меры — Допустимые отклонения

Концевые меры — Допустимые отклонения длины—Размеры 64 —Стандарты

Линейные концевые меры — их форма, размеры

МЕРЫ ДЛИНЫ КОНЦЕВЫЕ. ПЛОСКОПАРАЛЛЕЛЬНЫЕ. УГЛОВЫЕ. МЕРЫ ( Н. Н. Зяб рева, Лобанова)

Мера длины концевая

Меры 322 — Таблицы перевод длины концевые

Меры Перевод одних в концевые

Меры длины концевые плоскопараллельные

Меры длины концевые плоскопараллельные 131—136 — Наборы 133-134* Разряды 135* — Применение 184 Характеристики

Меры длины концевые штриховые

Меры длины штриховые концевые 635, 670 — Градации и размеры

Меры длины — штриховые и концевые. Определение. Достоинства и недостатки

Меры концевые - Классы точности

Меры концевые для измерения

Меры концевые ленточные для больших диаметро

Меры концевые штриховые

Меры — Определение длины концевые и штриховые

Меры— ем. Концевые мены длины Угловые меры Штриховые меры

Намерения Средства 504—534 — Выбор 528 534 — Меры концевые и штриховы

Основы технических измерений, концевые меры длины и угловые меры

Плоско-параллельные концевые меры длин

Плоско-параллельные концевые меры длины (плитки)

Плоскопараллельные концевые меры длины (ПКМД)

Плоскопараллельные концевые меры длины (плитки) (проф., д-р техн. наук И. Е. Городецкий и инж. М. И. Коненов)

Плоскопараллельные концевые меры длины (плитки) Я Шегал)

Плоскопараллельные концевые меры длины Е Плитки

Плоскопараллельные концевые меры длины и щупы

Плоскопараллельные концевые меры длины. Калибры

Плоскопараллеяьные концевые меры длины

Плоскотшраллелькые концевые меры длины

Штриховые и-концевые меры длины (д-р техн. наук проф. О. Ф. Тищенко)



© 2025 Mash-xxl.info Реклама на сайте