Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приспособления электромагнитные

Универсально-безналадочные приспособления (УБП). Конструкция УБП представляет собой механизм долговременного действия с постоянными регулируемыми (несъемными) элементами для установки различных заготовок. К таким приспособлениям относятся центры, поводковые устройства, оправки, патроны различных типов, цанговые зажимы, магнитные и электромагнитные плиты. УБП целесообразно применять на станках с ЧПУ в мелкосерийном производстве.  [c.237]


Однако опыт показывает, что если не применять специальных приспособлений, то в оптических экспериментах практически всегда мы имеем дело с неполяризованным светом. Почему и как нарушается поляризация электромагнитной волны, рассказано ниже.  [c.29]

В соответствии с этим при многочисленных световых измерениях необходимо принимать во внимание особенности глаза, заставляющие выделять определенный узкий участок длин волн из всего многообразия электромагнитных колебаний. Нередко термином свет называют именно узкий интервал, заключенный примерно между 400 и 800 нм. С этой точки зрения интерес представляет не просто восприятие энергии, а световое восприятие ее. Поэтому следует установить переход от энергетических величин к величинам, характеризующим световое восприятие, и целесообразно ввести специальную систему единиц, приспособленную к свойствам глаза человека.  [c.51]

Если задана материальная система S из N точек (i—l, 2, N) с двусторонними связями (даже и неголономными), то можно предположить, что на нее наложены другие связи, осуществляемые посредством автоматических приспособлений (например, электромагнитных), которые являются источником некоторых сил Ф,-, приложенных к точкам Р,- системы и совершающих не равную нулю работу при всяких виртуальных перемещениях ЗР , совместимых со связями системы. Эти силы Ф,- называются сервомотор ними,  [c.319]

Первые установки для тепловой микроскопии были снабжены приспособлениями в виде шторки или заслонки из металлического листа. Внутри рабочей камеры установки такая шторка при помощи электромагнитного толкателя, введенного через вакуумное уплотнение, перемещалась параллельно плоскости смотрового стекла. Шторка располагалась в промежутке между поверхностью образца и смотровым стеклом. Небольшое отверстие в ней на время наблюдения за структурой образца совмещалось с оптической осью объектива микроскопа, находящегося снаружи вакуумной камеры. При этом напыление на смотровое стекло происходило только во время наблюдения и фотографирования строения образца. Недостаток приспособления заключался в том, что после окончания опыта нужно было очищать смотровое стекло от слоя конденсата.  [c.86]

При использовании пневматических, гидравлических и электромагнитных приспособлений для закрепления деталей необходимо тщательно оберегать от механических повреждений трубки подачи воздуха и жидкости, а также электропроводку. Надо помнить, что при внезапном падении давления в пневмо- или гидросети или при внезапном перерыве в питании током изделие открепляется и если станок не снабжен соответствующими автоблокировками обрабатываемая деталь может вылететь из приспособления.  [c.308]


На станках современных конструкций безопасность применения пневматических, гидравлических и электромагнитных зажимных приспособлений обеспечивается введением соответствующих автоблокировок или ограничителей.  [c.308]

Для электромагнитных и других электрифицированных приспособлений рекомендуется питание приспособлений блокировать с пусковым устройством станка и снабжать станки устройствами, предотвращающими возможность сбрасывания детали, например ограждениями. Последние могут быть установлены на приспособлении или на столе станка.  [c.310]

На рис. 41 изображена схема машины Турбо-4 . Станина 1 закреплена на массивном блоке, устанавливаемом на полу через виброизоляторы. Заодно со станиной выполнен кронштейн 2, на конце которого укреплен якорь 6 электромагнитного возбудителя 7 колебаний, захват 3 для испытуемой лопатки 4 и датчик 5 вибросмещения, контактирующий с ее корневой частью. На кронштейне можно укрепить приспособление для испытаний сразу нескольких лопаток, установленных с помощью штатных зажимов.  [c.183]

При настройке на размер на стол станка под измерительное сопло устанавливают деталь или блок плиток заданного размера. Включают электромагнитную плиту. Установочное приспособление вместе с измерительным устройством опускают по колонне кронштейна, пока между измерительным соплом и образцовой деталью не останется зазор 0,6— 0,8 мм. Зазор ориентировочно устанавливают по щупу 0,6 мм. Винтом тонкой настройки измерительное устройство опускают, пока стрелка отсчетного устройства не установится на нулевое деление шкалы. Включают вращение стола, в результате которого стрелка отсчетного устройства может несколько сместиться от нулевого деления шкалы. Винтом тонкой настройки изменяют положение измерительного устройства, и стрелка вновь устанавливается на нулевое деление шкалы. Винт тонкой настройки надежно контрят. Настраивают контакты отсчетного устройства. Контакт окончательной команды настраивают на срабатывание у нулевого деления шкалы. Момент срабатывания определяют по загоранию сигнальной лампочки отсчетного устройства. Предварительную команду настраивают перемещением указателя в точку шкалы, соответствующую переходу с черновой подачи на чистовую (или выхаживание). Производят обработку партии деталей, в по результатам измерений их универсальными средствами вносят корректировку в настройку прибора.  [c.302]

Применяют также специальные сверлильные машины с электромагнитным основанием. Электромагнит постоянного тока создает силу притяжения до 700 кГ, поэтому приспособление, устанавливаемое непосредственно на корпус, не требует дополнительного крепления.  [c.99]

Известны автоматические линии, в которых шпильки засыпаются в электромагнитные сортирующие бункера, из которых они поступают по трубкам в подающее устройство, а затем в патроны шпинделей силовых головок. Автоматы оснащены контрольными приспособлениями, которые прерывают цикл при поступлении шпилек неправильного размера или с дефектами на их резьбе, а также на резьбе в гнездах.  [c.139]

Электромагнитные осциллографы (шлейфовые и струнные) применяются при частотах от 0 до 10 000 гц для фотографической записи деформаций и других процессов на подвижных бумажной ленте или плёнке в одной или нескольких точках. Осциллограф имеет воспринимающий орган (шлейф, струна), осветитель, устройство для записи (лентопротяжный механизм, однооборотный барабан для записи на бумагу с большой скоростью) и приспособление для визуального наблюдения отметка времени при записи может производиться камертоном с электрическим возбуждением (частота 50 или 100 гц). Развёртка (движение ленты) при записи изучаемого процесса может осуществляться не в функции времени, а в зависимости от какого-либо другого процесса. Число одновременно записываемых процессов определяется числом шлейфов в осциллографе. Шлейф характеризуется чувствительностью (сила тока в ма, вызывающая перемещение в 1 мм зайчика на экране при длине светового рычага в I м) и собственной частотой. Для погашения собственных колебаний шлейфа применяется демпфирование.  [c.241]

Приспособление для сближения электродов обычно выполняется в виде механического, гидравлического или электромагнитного приводов, которые обеспечивают одному из электродов поступательное движение относительно другого.  [c.65]


Следящая система автоматически с помощью электромагнитных систем приводит в действие приспособления для сближения электродов.  [c.65]

Примечание. К 6-й группе относятся многошпиндельные головки, а также крупные и средние приспособления с пневматическими, гидравлическими и электромагнитными устройствами.  [c.565]

Электроискровая обработка — см. Инструменты для электроискровой обработки Электролиты для электроабразивного шлифования 359 Электромагнитные плиты 83 Электромагнитные патроны 128 Эталоны установочные для фрезерных приспособлений 118—119  [c.568]

На точность обработки в отдельных случаях могут влиять температурные деформации приспособления. Его нагрев может происходить от стружки, от гидравлических или электромагнитных зажимных устройств и других причин при достаточно массивном корпусе приспособления нагрев, однако, незначителен.  [c.319]

Для определения механических свойств металла по твердости созданы переносные портативные приборы с механическим и электромагнитным креплением к оборудованию. В качестве примера на рис. 15-11 изображена схема прибора МЭИ-ТЗ с механическим креплением для определения твердости вдавливанием. Прибор состоит из ручного нагружающего механизма, пружинного силоизмерительного механизма, микроскопа и приспособления для крепления к паропроводу.  [c.175]

Экспериментальное определение амплитудно-фазовых харак> теристик электромагнитных управляющих элементов в большинстве случаев требует специальных, достаточно сложных приспособлений, различного оборудования и приборов. Наладка и настройка всей этой аппаратуры, проведение эксперимента, обработка и расшифровка результатов — вот далеко не полный перечень всех этапов работы от начала эксперимента до получения характеристик. Определение частотных характеристик расчетным путем прежде всего требует знания коэффициентов исходных уравнений, описывающих динамику электромагнитного управляющего элемента. В выражения для подсчета этих коэффициентов входят параметры, которые часто трудно, а порой и просто невозможно определить с достаточной степенью точности. Например, проводимости в стали, проводимости в зазорах, величины зазоров при сложной конфигурации изделия и т. п. В этих случаях при аналитическом определении частотных характеристик приходится прибегать к помощи тех или иных экспериментов. Следовательно, определение частотных характеристик экспериментальным путем или аналитически связано с большими затратами времени и труда, что, конечно, оправдывается тогда, когда необходимо получить точные и исчерпывающие сведения  [c.328]

При подготовке к зимней эксплуатации с помощью стендового оборудования и приспособлений проводят ревизию газовой аппаратуры редукторов высокого и низкого давления, вентилей, электромагнитных клапанов, фильтрующих элементов, карбюраторов-смесителей, манометров.  [c.202]

Электролизер для получения алюминия — сложный электрометаллургический агрегат. Конструктивное и технологическое состояние процесса оценивается параметрами — геометрическими (длина, ширина, площадь, объем и т.д.), электрическими (напряжение, сила тока, мощность, электрическое сопротивление), магнитными (напряженность и индукция магнитного поля электромагнитная сила и т.д). Тепловые характеристики определяются тепловыми и энергетическими параметрами — температурой, теплопроводностью, теплоемкостью и пр. Значение каждого из этих параметров позволяет оценить те или иные особенности работы электролизера. Для измерения каждого из этих параметров применяются различные методы, специальные приборы и приспособления.  [c.355]

При использовании приспособлений, оснащенных пневматическими, гидравлическими или электромагнитными приводами, тщательно проверять состояние коммуникаций подачи воздуха и жидкости, а также электропроводку. Не допускать воздействия на них движущихся частей станка.  [c.179]

При закреплении заготовок на электромагнитных приспособлениях проверить действие блокирующих устройств, которые должны автоматически выключать движение стола и вращение шпинделя при прекращении подачи электроэнергии.  [c.345]

Конструктивные схемы и технологические возможности сепараторов. Конструктивная схема сепаратора представлена на рис. 8. Основным элементом сепаратора является плоская или слегка вогнутая дека /, укрепленная на верхней раме 2, соединенной через упругие элементы 3 с реактивной рамой 4. Центробежный или электромагнитный вибровозбудитель 7 жестко соединен с рамой 4. Через мягкие виброизоляторы 5 сепаратор установлен на поворотной раме 6. С помощью подъемного приспособления S деке может быть придан необходимый продольный угол наклона а к горизонту, а винтовые опоры 9 с плитой 10 позволяют установить необходимый наклон деки е в поперечном направлении.  [c.354]

Оснащение плоскощлифовального станка (фиг. 89) различными приспособлениями (электромагнитной синусной плитой 10, установочными магнитопроводящими плитами 15, индикаторными устройствами 14 и 16 и др.) позволяет обрабатывать детали сложных профилей. Благодаря наличию специального си-  [c.95]

Пример 91. Гидравлический демпфер. Разберем движение груза, подвешенного на пружине, при наличии тормозящего приспособления — демпфера, или катаракта. Демпфирование может осуществляться различными механическими, в частности гидравлическими, электромагнитными (например, вихревыми токами Фуко) и другими способами. Гидравлический демифер (рис. 259) представляет собой закрытый цилиндр С с поршнем Я, соединенным жестким стержнем 5 с телом М. В цилиндр налита вязкая жидкость при движении груза и связанного с ним поршня жидкость перетекает из одной части цилиндра в другую через перепускные трубки К (которых мо кет быть несколько) или непосредственно через просверленные в поршне отверстия.  [c.86]


При пуске машины и ее остановке в процессе испытания- образец неоднократно проходит через резонанс. Устройство позволяет пройти критическое число циклов без возрастания напряжений в образце. Для этого образец 1 (рис. 82) нагружают до заданной величины изгиба при медленном вращении при л<п р гирями 2, которые подвешены к захватам 3 образца 1 с помощью двух скоб 4. После набора рабочего числа оборотов (/г>Якр) дополнительные опоры 5 и 6 выключают. Разработана машина с электромагнитным силовозбуждением для испытания на усталость при консольном круговом изгибе, машина для испытаний при изгибе в условиях резонанса с электромагнитным нагружением, а также с таким же нагружением для испытаний при плоском изгибе и изгибе с вращенн-ем и на круговой изгиб с приводом вращения магнита вокруг камеры машины . Имеются приспособления для резонансных усталостных испытаний образцов с резьбовыми головками. Разработана методика определения массы нагружающей системы машин типа НУ [167].  [c.164]

Универсальная машина для испытания на усталость с электромагнитным снловозбуждением отличается тем, что имеет приспособление для проведения испытаний в условиях контактного трения. Приспособление (рис. 143) состоит из литого корпуса ], на котором крепится направляющая 2 для установки корпусов 3 тарированных цилиндрических пружин 4, создающих нагрузку на ноже 5 через изготовленные из изоляционного материала толкатели 6. Пружины протарированы и могут дать нагрузку до 50 Н (5 кгс) на каждый нож. Ножи расположены по обеим сторонам образца 7.  [c.256]

ЛИТОЙ, сварной или кованой конструкций из алюминиевых, титановых, магниевых сплавов или других материалов с отверстиями на рабочей поверхности для крепления монтажного приспособления или непосредственно испытуемого изделия. Конструкция ударной платформы должна обеспечивать передачу воспроизводимого ударного нагружения на испытуемое изделие с минимальными искажениями, поэтому форму и размеры ее выбирают из условий максимальной прочности и жесткости. У кованых ударных платформ по сравнению с литыми или сварными конструкциями более высокие собственные резонансные частоты, их применяют, если необходимо воспроизводить ударные импульсы с малыми длительностями переднего фронта и большими ударными ускорениями. Если ударная платформа подвижная, то она имеет встроенные пневматические электромагнитные стопорные устройства, предназначенные для удержания ударной платформы с испытуемым изделием на заданной высоте, а также для предотвращения повторного удара платформы после отскока в случае воспроизведеиия одиночного ударного воздействия. Обычно применяют электромагнитное стопорное устройство, однако при обесточивании ударного стенда срабатывает стопорное устройство пневматического типа и удерживает ударную платформу от непредвиденного падения. Если ударная платформа неподвижна до начала ударного воздействия, то в ударной установке должно быть предусмотрено демпфирующее устройство, предназначенное для гашения скорости ударной платформы после удара. Ударная наковальня представляет собой массивную конструкцию, воспри-нпмагощую через тормозное устройство удар предварительно разгоняемой ударной платформы с испытуемым изделием. Ударные наковальни могут быть закреплены на основании установки либо жестко, либо на упругом подвесе. При жестком креплении н.аковаль-ни ударную установку, как правило, размещают на фундаменте, изолированном от строительных конструкций сооружения, в котором находится установка. При упругом подвесе нако-  [c.340]

РТсключительно важный вклад в изучение машин, в выяснение их роли и значения в общественном производстве внесли К. Маркс и Ф. Энгельс. Именно К. Марксу принадлежит строго научное и всестороннее определение машин, данное им в 13-й главе Капитала Всякое развитое машинное устройство состоит из трех сутцественно различных частей машины-двигателя, передаточного механизма, наконец машины-орудия, или рабочей машины. Машина-двигатель действует как движущая сила всего механизма. Она или сама порождает свою двигательную силу, как паровая машина, калорическая машина, электромагнитная машина и т. д., или же получает импульс извне, от какой-либо готовой силы природы, как водяное колесо от падающей воды, крыло ветряка от ветра и т. д. Передаточный механизм, состоящий из маховых колес, подвижных валов, шестерен, эксцентриков, стержней, передаточных лент, ремней, промежуточных приспособлений и принадлежностей самого различного рода, регулирует движение, изменяет, если это необходимо, его форму, например превращает из перпендикулярного в круговое, распределяет его и переносит на рабочие машины. Обе эти части механизма существуют только затем, чтобы сообщить движение машине-орудию, благодаря чему она захватывает предмет труда и целесообразно изменяет его Марксистский анализ технических, экономических и социальных аспектов машинного производства явился действенным и мощным стимулом для изучения проблем машинной техники, расширения и углубления исследовательских работ, возникновения науки о машинах.  [c.43]

Б. М. Елисеев. Приспособление к электромагнитному копировальнофрезерному станку типа Келлера для обратного копирования по изделию при изготовлении штампов или пресс-форм. Авт. свид. № 54776.— Бюллетень изобретений, 1939, № 4.  [c.212]

Приспособления для закрепления полируемых изделий должны обеспечивать надежный электрический контакт и не оказывать заметного сопротивления либо разогреваться при пропускании через них рабочего тока. Для мелких легких изделий применяются приспособления с принудительным контактом — винтовые, пружинные, магнитные и электромагнитные. Крупные тях<елые детали могут контактировать под действием собственного веса. Наиболее часто употребляются индивидуальные и специальные ириспособлеиия. Материал приспособлений — освинцованная сталь, кислотоупорная сталь,реже латунь и медь. Неработающие части изолируются пер-хлорвиниловыми, метакриловыми, бакелитовыми и тому подобными лаками.  [c.640]

ЭТИХ приспособлениях требуется дема-гинтизация заготовок. На фиг. 85, а показана схема электромагнитной, а на фиг. 85, 6 — магнитной плиты.  [c.177]

Од1[опроходное шлифование требует многоместных наладок и прочного крепления обрабатываемых деталей чаще применяют не электромагнитные устройства, а установочные приспособления с механическими зажимами. Метод однопроходного шлифования целесообразен для массового и серийного производства.  [c.425]

Находят применение специальные приспособления для сверления отверстий при помощи дрели, оборудовашюй электромагнитной скобой для сверления отверстий в труднодоступных местах. Электромагнитная скоба быстро без крепления устанавливается на деталь, подлежащую сверлению, и удерживается на ней силой магнитного поля, достаточной для преодоления осевого усилия при сверлении, рассчитанного на максимальный диаметр сверла. Электромагнитная скоба состоит (рис. 284, а) из основания 3, внутри которого расположены электромагнитные катушки пу-  [c.479]

Повышение энергонапряженности оборудования сопровождается широким внедрением новых технологических процессов при его изготовлении, эксплуатации и ремонте. Большое распространение электромагнитных кранов, патронов, приспособлений, использование  [c.230]

Модуляция осуществляется с помощью воплощения сигнала, вьфажающего передаваемое сообщение, в некотором процессе, называемом переносчиком и приспособленном к реализации в данной среде. Переносчик в системах связи представляет собой электромагнитные колебания U некоторой частоты, называемой несущей частотой  [c.61]



Смотреть страницы где упоминается термин Приспособления электромагнитные : [c.495]    [c.322]    [c.17]    [c.102]    [c.113]    [c.244]    [c.68]    [c.206]    [c.152]    [c.47]    [c.285]    [c.173]   
Справочник технолога-машиностроителя Том 2 Издание 4 (1986) -- [ c.94 ]



ПОИСК



Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте