Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения при внецентренном растяжении и изгибе

При внецентренном растяжении и сжатии нормальные напряжения в каждой точке поперечного сечения бруса, как и при изгибе, прямо пропорциональны расстоянию от этой точки до нейтральной оси. Наибольшие напряжения возникают в точках поперечного сечения, наиболее удаленных от нейтральной оси.  [c.370]

При определении значений коэффициентов интенсивности напряжений возможно использование плоских и цилиндрических образцов при различных схемах нагружения. Наибольшее распространение получили испытания образцов на внецентренное растяжение и изгиб.  [c.140]


Изгиб и растяжение. Нормальное напряжение при внецентренном растяжении или сжатии  [c.278]

Если стержень работает на внецентренное растяжение (сжатие), то испытываемый им изгиб является чистым изгибом, и поэтому касательные напряжения в поперечных сечениях не возникают. Ввиду этого излагаемая теория не нуждается в поправках ни в отношении вычисления напряжений, ни в отношении определения деформаций. Но если стержень растянут (сжат) и одновременно изогнут поперечной нагрузкой, то в поперечных сечениях возникают касательные напряжения, а потому приходится учитывать высказанные ранее соображения о центре изгиба ( 65). Стержень работает на изгиб и растяжение только в том случае, если плоскость поперечной нагрузки проходит через центр изгиба. В противном случае он испытывает также кручение. При внецентренном растяжении (сжатии), как следует из сказанного, кручение не может возникнуть, так как касательные напряжения отсутствуют.  [c.285]

К первой группе относятся те случаи, при которых в опасных точках бруса напряженное состояние либо является одноосным, либо может приближенно рассматриваться как одноосное в связи с незначительным влиянием на прочность бруса касательных напряжений, возникающих в его поперечных сечениях. Поэтому в таких случаях при расчетах на прочность теории прочности не используются. К первой группе относятся косой изгиб, а также внецентренное растяжение и сжатие.  [c.414]

Стремление отразить при лабораторных механических испытаниях влияние неравномерности в реальных изделиях привело к появлению большого числа методов с заведомо созданной неравномерностью напряженного и деформированного состояния испытания надрезанных образцов на растяжение с перекосом, испытания образцов с трещиной при внецентренном растяжении или при поперечном изгибе и т. д.  [c.101]

Попутно с этим расчетом раму необходимо проверить и на изгиб силой пара. При нормальных условиях работы, когда струнка включена в работу, изгиб, конечно, ничтожен, но при ослаблении струнки внецентренное растяжение рамы дает в ней большие напряжения на растяжение и изгиб.  [c.457]

Поскольку при внецентренном ударе кроме деформаций и напряжений растяжения (сжатия) возникают еще деформации и напряжения изгиба, примем гипотезу о том, что изогнутая ось стержня при ударе совпадает по форме с изогнутой осью при статическом действии нагрузки.  [c.292]


При одновременном действии продольных и поперечных сил брус испытывает одновременно растяжение или сжатие и сложный изгиб. Нормальное напряжение в любой точке сечения определяется как алгебраическая сумма напряжений от изгиба и от растяжения (сжатия). Если брус находится под действием уравновешенной системы продольных сил, приложенных к торцовым сечениям внецентренно, то деформация бруса называется внецентренным растяжением (сжатием). Напряжение для произвольной точки сечения в этом случае находится так же, как и при одновременном действии продольных сил и изгибающих моментов.  [c.191]

Внецентренное сжатие стержней большой жесткости в пластической области. Так как при внецентренном сжатии, так же как и при чистом изгибе, нормальные напряжения, а следовательно, и соответствующие им деформации изменяются пропорционально расстояниям волокон от нейтральной плоскости, то пластические деформации впервые появляются в волокнах, наиболее удаленных от этой плоскости, в большинстве случаев — в сжатых. По мере роста деформаций пластическое состояние охватывает все большее и большее число волокон, так что в се-чении образуются целые зоны пластичности, охватывающие все большую и большую часть сечения. Граница между упругой и пластической зонами постепенно приближается к нейтральной оси, которая в свою очередь меняет свое положение. В зависимости от поведения материала при пластической деформации окончание этого процесса может иметь различный характер. Мы рассмотрим только случай, когда материал деформируется пластически без упрочнения и имеет одинаковые пределы текучести при растяжении и сжатии. В этом случае пластическая деформация, начавшаяся в сжатой зоне сечения, при определенной величине нагрузки распространяется и на растянутую зону, охватывая постепенно все большую и большую ее часть. Таким образом, за предельное состояние можно принять такое, при котором та и другая зоны сечения оказываются в со- стоянии пластической деформации, т. е. напряжения во всех точках равны соответствующему пределу текучести. Тогда на основании (7.1) получим  [c.257]

Выражения для расчета Ка. различны при различных формах образца и при различных способах нагружения (осевое или внецентренное растяжение, изгиб). Расчет Кс по формулам (3) и (4) ведется методом последовательных приближений. Он правомерен только в том случае, когда пластическая зона мала по сравнению с длиной трещины. Чем ниже предел текучести и меньше длина исходной трещины, тем больше зона пластической деформации. Считается, что разрушающее напряжение в сечении нетто не должно превышать 0,8 сГо,2- При этом обычно лавинное разрушение образца наступает при максимальной нагрузке без постепенного ее спада в процессе роста трещины, и по-  [c.95]

Построение диаграмм нагрузка—раскрытие трещины и вычисление критического коэффициента интенсивности напряжений в условиях плоской деформации /([ .-характеристики, не зависящей от толщины материала, при испытании на осевое растяжение образцов с центральной трещиной (редко) или обычно испытание на изгиб или внецентренное растяжение образцов с усталостной трещиной  [c.126]

При сложном сопротивлении или сложных видах нагружения в отличие от простых случаев возникает не один, а два или более внутренних силовых фактора, которые могут быть как моментом, так и силой. Все случаи сложного сопротивления решаются исходя из принципа независимости действия нагрузок, т. е. напряжения определяются суммированием напряжений от действия каждого силового фактора. Сложное сопротивление наблюдается при косом изгибе, внецентренном растяжении или сжатии и при различном сочетании простых видов нагружения.  [c.116]

При изучении деформаций растяжения, сжатия и сдвига, а также при исследовании напряженного состояния тела нам достаточно было знания простейшей геометрической характеристики плоского сечения — площади. При изучении других типов деформаций стержней (кручения, изгиба, внецентренного растяжения или сжатия и т. д.) придется встречаться с другими, более сложными геометрическими характеристиками плоских сечений, а именно, со статическими моментами и моментами инерции.  [c.103]


МОЖНО тот же эффект по снятию сварочных деформаций и напряжений получить путем изгиба или внецентренного растяжения, создавая в районе сварных швов напряжения растяжения, близкие к пределу текучести, затрачивая при этом значительно меньшие усилия по сравнению с продольным растяжением.  [c.450]

Данные характеристики применимы к трем типам разрушения — хрупкому, квазихрупкому и вязкому, различающимся по степени пластических деформаций в зоне разрушения и уровню номинальных разрушающих напряжений. Для их выявления проводятся испытания образцов с предварительно созданной усталостной трещиной на трехточечный изгиб, внецентренное и осевое растяжения. Применяются плоские с боковой и центральной трещиной, дисковые и цилиндрические образцы. В процессе испытаний осуществляется регистрация диаграмм нагрузка смещение берегов трещины , при обработке которых с использованием соответствующих формул находятся указанные критерии разрушения, которые должны удовлетворять определенным требованиям достоверности.  [c.16]

Ремень в процессе работы находится в сложном напряженном состоянии, причем отдельные составляющие напряжений и деформаций циклически изменяются при обходе ремня по контуру ременной передачи. Особо сложен процесс деформации ремня при передаче тягового усилия на щкивах, где отдельные элементы ремня воспринимают напряжения растяжения от предварительного натяжения ремня, напряжения изгиба при охвате шкива, напряжения сдвига от передачи окружного усилия, причем распределение всех этих напряжений неравномерно по высоте, ширине ремня и длине дуги охвата. Аналитическое определение напряжений и деформаций элементов клинового ремня с определением мест максимальной концентрации напряжений и учетом реальной анизотропии ремня, внецентренного приложения нагрузки, изменения фрикционной связи по высоте канавки и длине дуги охвата может быть выполнено лишь с допущениями, не исключающими некоторой неточности расчета.  [c.33]

Курс прикладной механики Бресса состоит из трех томов ). Из них лишь в первом и третьем рассматриваются задачи сопротивления материалов. Автор не делает никаких попыток ввести результаты математической теории упругости в элементарное учение о прочности материалов. Для всех случаев деформирования брусьев предполагается, что их поперечные сечения остаются при деформировании плоскими. В таком предположении исследуются также внецентренные растяжение и сжатие, при этом используется центральный эллипс инерции, как это было разъяснено выше (см. стр. 178). Бресс показывает также, как подходить к задаче, если модуль материала изменяется по площади поперечного сечения. Гипотеза плоских сечений используется им также и в теории кручения, причем Бресс делает попытку оправдать это указанием на то, что в практических применениях поперечные сечения валов бывают либо круглыми, либо правильными многоугольниками, почему депланацией их допустимо пренебрегать. В теории изгиба приводится исследование касательных напряжений по Журавскому. В главах, посвященных кривому брусу и арке, воспроизводится содержание рассмотренной выше книги того же автора.  [c.182]

Наиболее важные результаты былн получены в области исследования со- противления однократному статическому н динамическому разрушению с учетом начальных макродефектов на базе линейной и нелинейной механики разрушения. Это в первую очередь относится к разработке теории и критериев хрупкого и квазихруикого разрушений упругих и упругопластических тел с трещинами. К числу силовых, энергетических и деформационных критериев относятся критические значения коэффициентов интенсивности напряжений Ки и Кс, пределов трещиностойкости энергии разрушения Gi , G , Уь J , раскрытия трещин или бе, а также критические деформации в вершине трещин е . Для определения указанных характеристик известны многочисленные методики испытаний — на статическое растяжение плоских и цилиндрических образцов с трещинами, на статический изгиб и внецентренное растяжение плоских образцов, на внутреннее давление сосудов, на растяжение центробежными силами при разгонных испытаниях дисков.  [c.21]

Каждый из описанных методов облаоз.ает присущими ему и достоинствами и недостатками. Основным недостатком метода свободного профилирования нужно считать возможность искажения линий плавности на поверхности лопатки. При косом фрезеровании геометрические характеристики сечений меняются плавно, причем все сечения связаны единым законом образования, что существенно упрощает и делает более надежным контроль геометрии лопатки. Однако проектирование лопаток этим методом может привести к тому, что в результате разброса центров тяжести сечений в теле лопатки возникают недопустимо высокие напряжения изгиба от собственных центробежных сил (внецентренное растяжение). Для разгрузки лопатки от этих напряжений ей придается так называемый начальный погиб [39], при этом сечения лопатки перемещают относительно того положения, которое они занимали бы после косого фрезерования. Смещение сечений происходит при обработке лопатки на фрезерном станке путем перемещения фрезы вместе со шпиндельной бабкой в вертикальной плоскости по копиру, кривая которого строится в соответствии с величинами погибов в расчетных сечениях.  [c.63]


Имея это в виду, будем решать только задачу о внецентренном растяжении (сжатии). Заметим, что решение оказывается достаточно точным лишь для жестких балок, прогибы которых ничтожно малы по сравнению с поперечными размерами. Если балка гибка, то продольная сжимающая сила, изгибая балку, будет заметным образом увеличивать эксцентриситет в опасном сечении, так что деформации и напряжения станут возрастать не пропорционально нагрузке, а более быстро. Принцип независимости действия сил неприменим к этой задаче при большой гибкости балки. Если же считать балку жесткой в том смысле, как указано выше, то решение становится очень пррстым.  [c.280]

Испытания на внецентренное растяжение, например с заданным исходным перекосом или односторонним надрезом, добавляют к растяжению значительную долю изгиба. При этом для выравнивания напряжений, т. е. уменьшения внецентренности путем пластической деформации, необходима значительная пластичность. Многие стали с Ов поряда 180 кгс/мм (после закалки и низкого отпуска) не обладают такой пластичностью и потому являются чувствительными к перекосу, т. е. снижают прочность при наличии надреза и перекоса.  [c.134]

Частный случай полюс силы находится на одной из главных осей сечения. Нейтральная линия перпендикулярна этой оси. При этом внецентренное действие продольной силы приводится к щгнтралыюму растяжению (сжатию) и поперечному изгибу (рйс. 6.7). Напряжения в крайних дочках симметричного сечения опре-  [c.163]

Учет совместного действия силовых факторов при анализе напряженно-деформированного состояния конструкций сейсмостойких зданий и сооружений. Колонны каркасных зданий во время землетрясения работают как внецентренно-сжатые или сжато-изогнутые элементы. В зданиях с гибким первым этажом, особенно в многоэтажных, крайние колонны могут оказаться внецейтренно-растянутыми. При сейсмических колебаниях вертикальные несущие элементы испытывают изгиб в двух направлениях. Кроме того, в железобетонных колоннах каркасов при небольшой их гибкости возникают значительные поперечные силы, которые могут существенно снизить прочность приопорных зон. Узлы ригелей и колонн испытывают совместное действие изгибающих моментов, продольных и поперечных сил. Диафрагмы бескаркасных зданий в условиях сейсмических воздействий работают на знакопеременные усилия сдвига и растяжения-сжатия. В отдельных элементах зданий (простенки, перемычки и др.) возникает сложное на-  [c.69]


Смотреть страницы где упоминается термин Напряжения при внецентренном растяжении и изгибе : [c.431]    [c.142]    [c.92]    [c.363]    [c.106]   
Сопротивление материалов Издание 3 (1969) -- [ c.276 , c.282 , c.309 ]



ПОИСК



Изгиб с растяжением и внецентренное растяжение

Напряжение изгибающие

Напряжение при изгибе

Напряжения Напряжения изгиба

Напряжения растяжения

Растяжение внецентренное

Растяжение с изгибом



© 2025 Mash-xxl.info Реклама на сайте