Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод характеристик при численном решении задач газовой динамики

В последующих главах изложены метод сеток и численный метод характеристик, некоторые современные подходы к решению задач газовой динамики метод установления, методы сквозного счета. Изложены и специальные численные методы метод интегральных соотношений, обратные методы, методы крупных частиц и конечных элементов. В связи с актуальностью проблемы создания пакетов прикладных программ в последней главе приведены примеры таких пакетов для некоторого класса задач газовой динамики. В каждой главе рассмотрено применение численных методов к решению наиболее характерных прикладных задач. Приведены примеры решения прикладных задач, таких, как обтекание потоком газа затупленного тела, течение газа в сопле, задача о взрыве.  [c.4]


В этом параграфе приведены основные формулы численного метода характеристик, используемые для решения задач газовой динамики. Описаны алгоритмы расчета для внутренних точек области и точек, лежащих на границах. Рассмотрены течения реагирующего газа с физико-химическими превращениями.  [c.112]

Наличие электронных вычислительных машин позволило разработать для ряда важных задач эффективные методы решения уравнений газовой динамики, получать количественные характеристики потока, иметь расчетные данные, которые могут заменить эксперимент. Появление современных численных методов относится к середине века, и именно с этих лет в теоретических исследованиях по газовой динамике наравне с аналитическим направлением получило развитие и направление численных методов.  [c.337]

Вместе с соображениями, изложенными в [19 авторам [20] найти решение задачи профилирования всего сопла (а не только его сверхзвуковой части), реализующего максимум тяги при заданной полной длине. В свою очередь, построение такого решения, в котором дозвуковая часть заменена внезапным сужением (Глава 4.14), потребовало создания методов численного интегрирования уравнений газовой динамики на существенно неравномерных сетках (Глава 7.9). Наряду с созданием в основном для расчета околозвуковых течений в потенциальном приближении специальных численных схем (см. Введение к Части 7) в ЛАБОРАТОРИИ был развит метод [21], который с учетом особых свойств околозвуковых потоков позволяет находить интегральные характеристики сопел с существенно более высокой точностью, чем точность численного определения используемых для этого параметром течения.  [c.212]

Понятие о численном методе характеристик. Теория характеристик играет исключительно важную роль при формулировке краевых условий задач газовой динамики. Кроме того, свойства характеристик широко используются при численном решении уравнений. В дальнейшем при рассмотрении конкретных задач  [c.31]

Схема профилирования канала при описанных граничных условиях основана на решении обратной задачи, включающей характерные задачи газовой динамики задачи Коши в областях ABE и BF , задачу Гурса в области BEF и две смешанные краевые задачи в областях FK и K I- Вначале по заданному перепаду 5(г1з) вдоль ударной волны AB рассчитываются данные Коши за ней. При этом параметры в точке В определяются отдельно от остального участка волны по программе расчета конфигурации с взаимодействием ударной волны и веера сжатия. В работе проведено численное параметрическое исследование конфигурации, и в широком диапазоне М° (1,2 М° Ю) выявлены области ее существования с отраженным веером разрежения и ударной волной. Затем классическим методом характеристик решаются задачи Коши, задача Гурса и смешанная задача в области KF. Для рас-  [c.182]


В [1, 2] был рассмотрен только случай tf < то, для которого при г/ = о задача решена точно, а при р ф 0 приближенно (в рамках использования плоского течения типа простой волны ). Ниже время tf может быть любым. Для tf = то точное решение методом неопределенного контрольного контура [3] найдено для всех р. Здесь под точным решением понимается сведение исходной задачи построения оптимальной траектории поршня к численному решению нескольких задач одномерной нестационарной газовой динамики методом характеристик (МХ). В одной из решаемых МХ задач известно распределение параметров на концевом участке экстремальной (7 -характеристики,  [c.311]

Переход в сороковых годах авиации на большие дозвуковые скорости полета привел к усиленным исследованиям обтекания крыла с учетом сжимаемости воздуха. Техническая задача состояла в разработке методов профилирования крыла с заданными аэродинамическими свойствами — подъемной силой, моментными характеристиками и т. д. (Эта задача, рассматриваемая в более широкой постановке, актуальна и по сей день как задача профилирования оптимального крыла, причем оптимизация проводится по большому числу технических параметров.) Отсутствие в то время быстродействующей вычислительной техники, а следовательно, и эффективных возможностей численного решения краевых задач для нелинейных уравнений газовой динамики, определило преимущественное развитие аналитических методов, развивающих, в основном, метод С. А. Чаплыгина.  [c.141]

В течение ряда лет метод характеристик является одним из основных для численного решения задач газовой динамики. В основном его применяют для расчета двумерных сверхзвуковых и одномерных стационарных течений газа. Реже этот метод используют для расчета пространственных стационарных и двумерных нестационарных течений. Важное свойство метода характеристик состоит в том, что он может быть использован не только для расчета течения нереагирующего газа с постоянным показателем адиабатьс, но и течений с физико-химическими пре-  [c.111]

Численный метод характеристик. Теория характеристик играет исключительно важную роль при формулировке краевых условий задач газовой динамики. Кроме того, свойства характеристик широко используются при числовом решении уравнений. В дальнейшем при рассмотрении конкретных задач о движении газа эти вопросы будут неоднократно затрагиваться. Здесь е кратко поясним идею численного метода характеристик на примере нестационарных уравнений в инвариантах для изоэнтропи-ческих течений  [c.47]

Численные алгоритмы, основанные на методе характеристик имеют ярко выраженную модульную структуру. Они заключаются в последовательном выполнении более простых алгоритмо (модулей), предназначенных для вычисления решения во внутренних и различного рода граничных узлах характеристической сетки. В предыдущем параграфе были приведены такие алгоритмы для некоторого класса гиперболических уравнений газовой динамики. Зная, как с помощью метода характеристик определить решение в точке, можно решать некоторые типичные для гиперболических уравнений задачи. К таким задачам относятся задача Коши, задача Гурса и смешанная задача. Схемы решения их методом характеристик и алгоритм решения описаны в 2.2. Алгоритмы решения задачи Коши, Гурса и смешанной задачи можно рассматривать как модули более высокого уровня (макромодули).  [c.125]

Введение. Методы выделения поверхностей разрывов при численных расчетах газодинамических задач известны [1-5]. Основываются они либо на методе характеристик [1] с алгоритмическим внесением специальных процедур, например выделение плавающих разрывов [6], либо на решении задачи о распаде разрыва [2] с последующим использованием подвижных сеток. Применение подобных подходов в нелинейной динамике деформируемых твердых тел проблематично из-за взаимозависимости в них, по существу, двух процессов распространения граничных возмущений изменение объемных деформаций и деформаций изменения формы. Поэтому в этом случае используются, главным образом, различные варианты схем сквозного счета [7-9]. Следует, однако, заметить, что из-за наличия в деформируемых телах более значимого диссипативного механизма (пластичность, ползучесть), проблема выделения фронтов разрывов в твердых деформируемых средах не стоит столь остро, как в газовой динамике. Иначе, использование здесь разных вычислительных методик, основанных на процедурах сквозного счета, гораздо более оправдано. И все же существуют ситуации в динамике деформируемых твердых тел, когда нестационарность явления столь существенна (отражение и взаимодействие ударных волн при высокоскоростном соударении и др.), что выделение нелинейных разрывов может стать необходимым. Здесь предлагается способ расчета ударного деформирования, выделяющий поверхность разрыва путем включения в неявную разностную схему одновременного вычисление параметров прифронтовой асимптотики, т. е. параметров разложения решения непосредственно за поверхностью разрывов в асимптотический ряд. Способы построения таких разложений могут основываться на методе возмущений  [c.146]



Смотреть страницы где упоминается термин Метод характеристик при численном решении задач газовой динамики : [c.2]    [c.14]    [c.113]    [c.355]   
Прикладная газовая динамика. Ч.2 (1991) -- [ c.267 , c.273 , c.276 ]



ПОИСК



Me численные (см. Численные методы)

Газовая динамика

Динамика ее задачи

Задача и метод

Задачи динамики

Задачи и методы их решения

Метод характеристик

Методы численные

Методы численные (см. Численные методы)

Методы • решения численные

Решение задач динамики

Решения метод

Характеристика газовые

Характеристики в газовой динамике

Численное решение задач газовой динамики

Численное решение задачи

Численные решения



© 2025 Mash-xxl.info Реклама на сайте