Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы кручения 686, 688, 692 — Характеристики

Остановимся на частном случае общей задачи, которая допускает разложение общей системы разрешающих уравнений на ряд систем для отдельных гармоник. Это накладывает ограничение на распределение механических характеристик материала, которые не должны изменяться в окружном направлении. При этом предполагается, что зоны взаимодействия между телами охватывают полную окружность, т. е. не зависят от координаты 0. Будем также предполагать, что рассматриваемая задача имеет хотя бы одну меридиональную плоскость симметрии, чтобы при разложении в ряды Фурье радиальных и осевых компонентов объемной и поверхностной нагрузки, заданных перемещений и , и , температуры оставить только члены разложения по косинусам, а для компонентов перемещений и нагрузки окружном направлении — по синусам. Для нулевой гармоники удержим и окружные компоненты перемещений и нагрузки, чтобы можно было рассматривать осесимметричную задачу с деформациями типа кручения В этом случае общая система уравнений (V.8) распадается на п отдельных систем более простого вида  [c.169]


В нашей стране изготавливают типовые машины для испытаний по различным схемам нагружения чистый и консольный изгиб вращающегося образца, изгиб плоских образцов, растяжение — сжатие, кручение. Основные технические параметры типовых моделей приведены в работе [62]. Стандарт [48] определяет характеристики механических, электромеханических и гидравлических машин. Нормируются следующие параметры наибольшая суммарная нагрузка, наибольшая амплитуда нагрузки, частота циклов нагружения и некоторые другие показатели, характерные для конкретного типа машин.  [c.33]

В общем случае Л,/, Bij и Dtj — симметричные матрицы с не-нулевыми компонентами, каждая содержит шесть независимых компонент в соответствии с (4.17). Если структура композита симметрична, то Bij = 0 и отсутствует взаимное влияние, т. е. связь между мембранными характеристиками (деформациями, например) и характеристиками изгиба — кручения. Величины А, В и D преобразуются аналогично Q Ап, 22, Ai2, Лбб, Du, D22, D 2 и Обб положительно определены Л16 = 26 = Oi6 = D26 = О для композитов, состоящих только из слоев, ориентированных взаимно перпендикулярно. Для схем армирования типа [ 0°]s, состоящих из большого числа слоев, величины Die, >26, le и Лгв могут быть существенно малыми по сравнению с другими компонентами жесткостей. Уравнение (4.16) можно преобразовать так, что деформации в плоскости, не связанные с изгибом и кручением (мембранные), и компоненты кривизны и кручения будут выражены через приложенные нагрузки и свойства материала.  [c.147]

Из опыта эксплуатации кулачковых и торсионных пластометров и задач, которые стоят в области изучения реологических свойств металлов и сплавов для процессов ОМД, можно определить требования, которым должны удовлетворять современные установки подобного типа - 1) широкий регулируемый скоростной диапазон испытаний в пределах 0,01—500 с 2) возможность получения больших степеней деформации (испытания на плоскую осадку, кручение) 3) возможность воспроизведения самых различных, заранее программируемых и управляемых с помощью ЭВМ законов нагружения как за один цикл испытаний, так и при дробном деформировании 4) возможность записи кривых релаксаций в паузах между нагружениями с длительностью пауз от 0,05 до 10 с 5) фиксация структуры металла с помощью резкой закалки образца в любой точке кривой течения 6) оснащение установок высокотемпературными печами для нагрева образцов до 1250 °С в обычной среде и в вакууме или среде инертного газа до 2000—2200 °С 7) возможность воспроизведения при испытаниях, особенно дробных, различных законов изменения температуры металла, фиксация температуры образца с помощью быстродействующих пирометров 8) возможность проведения испытаний не только при одноосных схемах напряженного состояния, но и в условиях сложнонапряженного состояния, особенно при исследовании предельной пластичности 9) обеспечение высоких требований по жесткости машин, по техническим характеристикам измерительной и регистрирующей аппаратуры, возможность стыковки с ЭВМ (УВМ) для автоматизированной обработки данных и управления экспериментом.  [c.49]


АЗ.3.4. Сопротивление термической усталости. Термической усталости подвержены детали, испытывающие теплосмены. Этот тип разрушения описан еще Д. К. Черновым (1912 г.), который исследовал причины растрескивания внутренних поверхностей орудийных стволов. По существу термоусталость представляет собой малоцикловую усталость в неизотермических условиях нагружения, поэтому характеристики могут быть определены из соответствующих испытаний при независимых (но надлежащим образом синхронизированных — синфазных) циклических силовом и тепловом воздействиях. Такую независимость технически наиболее просто обеспечить при циклическом кручении в случае растяжения-сжатия необходимо применение специальной автоматики, следящей за изменением усилия в образце и исключающей влияние температуры на его изменение [25]. Возможности таких установок при их надлежащем оснащении весьма широки.  [c.119]

При изучении деформаций растяжения, сжатия и сдвига, а также при исследовании напряженного состояния тела нам достаточно было знания простейшей геометрической характеристики плоского сечения — площади. При изучении других типов деформаций стержней (кручения, изгиба, внецентренного растяжения или сжатия и т. д.) придется встречаться с другими, более сложными геометрическими характеристиками плоских сечений, а именно, со статическими моментами и моментами инерции.  [c.103]

В качестве более эффективной процедуры расчета индуцированного поля скорости рассмотрим еще один подход [9], который предполагает при определении скорости и функции тока непосредственное выделение из ряда (2.1) особенностей, записанных в искаженных пространственных переменных, явно учитывающих кручение вихрей. В отличие от описанных выше методов, этот подход позволяет для любых точек пространства рассчитывать характеристики течений (2.2) - (2.4) с необходимой точностью. Для расчета (2.2) - (2.4) обобщим метод [9] для любого типа (/ и 7 = О или 1) ряда (2.1), возникающих в определениях функции тока (М = 0), поля скорости (М = 1) и ее пространственных производных (М = 2). С этой целью в рядах (2.1) формально заменим цилиндрические функции их равномерными разложениями при больших порядках [2]  [c.400]

Важное значение имеет магнитострикционный преобразова-тель-излучатель, в котором используется эффект кручения. Вибраторы этого типа приходится конструировать таким образом, чтобы обеспечить их действие в условиях высоких температур и влажности без изменения их характеристик. Действие вибраторов основано на том, что когда стержень скручивается в магнитном поле, то происходит изменение его магнитного  [c.225]

Различие в формах упругих элементов муфт приводит, естественно, к различию их характеристик и в первую очередь к различию упругих и компенсационных свойств. Достаточно сказать, что коэффициенты жесткости при кручении, величины допускаемых смещений и частот вращения отдельных типов муфт одного габаритного размера могут отличаться друг от друга на порядок. Наблюдается и существенное различие в демпфирующей способности муфт. Широкий диапазон изменения параметров муфт с резиновыми упругими элементами по существу и определяет широту области их применения, позволяя для каждого конкретного привода использовать наиболее рациональную конструкцию муфты.  [c.6]

При осевом нагружении были обнаружены превосходные усталостные характеристики как однонаправленных, так и ортогонально армированных углепластиков с высокомодульными волокнами типа I. Удельная усталостная прочность углепластиков вместе с удельным модулем дают большие возможности для уменьшения веса изделия притих разумном применении. Хотя пока опубликовано немного данных, по-видимому, можно сказать, что композиты с волокнами типа II более подвержены влиянию усталости, но обладают все же очень хорошими усталостными свойствами. Отсутствуют опубликованные результаты для композитов с волокнами типа III. Обнаружено, что прочность на сжатие намного ниже, чем прочность на растяжение, и поэтому изгибная усталостная прочность определяется прочностью на сжатие. Было установлено, что влияние усталости значительно более заметно в условиях сдвигового нагружения как при межслойном сдвиге, так и при кручении. Не сообщено об усталостных испытаниях при сдвиге в плоскости листа, однако большинство  [c.391]


Существенный интерес представляет определение секториаль-ных Характеристик для прокатных профилей. Здесь прежде всего следует выделить профили типа уголка и тавра. В этих профилях центр жесткости располагается на пересечении средних линий полок, и секториальная площадь для любой точки средней линии сечения равна нулю. Следовательно, плоскость сечения таких профилей при кручении не искажается.  [c.423]

МОДУЛЬ [продольной упругости определяется отношением нормального напряжения в поперечном сечении цилиндрического образца к относительному удлинению при его растяжении сдвига измеряется отношением касательного напряжения в поперечном сечении трубчатого тонкостенного образца к деформации сдвига при его кручении Юнга равен нормальному напряжению, при котором линейный размер тела изменяется в два раза] МОДУЛЯЦИЯ [есть изменение по заданному во времени величин, характеризующих какой-либо регулярный физический процесс колебаний <есть изменение по определенному закону какого-либо из параметров периодических колебаний, осуществляемое за время, значительно большее, чем период колебаний амплитудная выражается в изменении амплитуды фазовая указывает на изменение их фазы частотная состоит в изменении их частоты) пространственная заключается в изменении в пространстве характеристик постоянного во времени колебательного процесса] МОЛЕКУЛА [есть наименьшая устойчивая частица данного вещества, обладающая его химическими свойствами атомная (гомеополярная) возникает в результате взаимного притяжения нейтральных атомов ионная (гетерополярная) образуется в результате превращения взаимодействующих атомов в противоположно электрически заряженные и взаимно притягивающиеся ионы эксимерная является корот-коживущим соединением атомов инертных газов друг с другом, с галогенами или кислородом, существующим только в возбужденном состоянии и входящим в состав активной среды лазеров некоторых типов МОЛНИЯ <есть чрезвычайно сильный электрический разряд между облаками или между облаками и землей линейная является гигантским электрическим искровым разрядом в атмосфере с диаметром канала от 10 до 25 см и длиной до нескольких километров при максимальной силе тока до ЮОкА)  [c.250]

Из таблиц 5.2 и 5.3 видно, что начальные прогибы существенно изменяют частоты собственных колебаний тоншстенных конструкций. При этом начальные перемещения, связанные с изгибом, влияют, главным образом, на частоты крутильных тонов, а перемещейия, связанные с кручением - на частоты изгибных тонов собственных колебаний. В последнем случае влияние проявляется более существенно. Так, например, при прогибе = 0.18 см (М=120Нсм) частота второго тона изгибных колебаний возросла на 58,5%, а частота третьего тона - на 64,9%, что необходимо учитывать при определении динамических характеристик лопастей турбомашин, винтовентиляторов и других типов тонкостенных конструкций. Отметим, что формы собственных колебаний (число и расположение узловых линий) в исследованной задаче изменялось незначительно.  [c.131]

Установив основное уравнение (i), Кулон углубляется в более тщательное изучение механических свойств материалов, из которых изготовляется проволока. Для каждого типа проволоки об находит предел упругости при кручении, превышение которого приводит к появлению некоторой остаточной деформации. Точно так же он показывает, что если проволока подвергнута предварительно первоначальному закручиванию далеко за предел упругости, то материал в дальнейшем становится более твердым и его предел упругости повышается, между тем как входящая в уравнение (i) величина i остается неизменной. С другой сторны, путем отжига он получает возможность снизить твердость, вызванную пластическим деформированием. Опираясь на эти опыты, Кулон утверждает, что для того, чтобы характеризовать механические свойства материала, необходимы две численные характеристики, а именно число i, определяющее упругое свойство материала, и число, указывающее предел упругости, который зависит от величины сил сцепления. Холодной обработкой или быстрой закалкой можно увеличить эти силы сцепления и таким путем повысить предел упругости, но в нашем распоряжении нет средств, способных изменить упругую характеристику материала, определяемую постоянной 1. Для того чтобы доказать, что это заключение распространяется также и на другие виды деформирования. Кулон проводит испытания на изгиб со стальными брусками, отличающимися один от другого лишь характером термической обработки, и показывает, что под малыми нагрузками они дают тот же прогиб (независимо от своей термической истории), но что предел упругости брусьев, подвергшихся отжигу, получается значительно более низким, чем тех, которые подвергались закалке. В связи с этим под большими нагрузками бруски, подвергшиеся отжигу, обнаруживают значительную остаточную деформацию, между тем как термически обработанный металл продолжает оставаться совершенно упругим, поскольку термическая обработка повышает предел упругости, не оказывая никакого влияния на его упругие свойства. Кулон вводит гипотезу, согласно которой всякому упругому материалу свойственно определенное характерное для него размещение молекул, не нарушаемое малыми упругими деформациями. При превышении предела упругости происходит какое-то остаточное скольжение молекул, результатом чего является увеличение сил сцепления, хотя упругая способность материала сохраняется при этом прежней.  [c.69]

Следует заметить, что в плоскостях поперечных сечений скручиваемого стержня границы между упругими и пластическими областями пересекают следы горизонталей / =соп81 функции напряжений пластического кручения внутри этого сечения (исключая случай кругового сечения). Эти последние кривые составляют одно семейство характеристик уравнения в частных производных гиперболического типа (35.15) для функции напряжений Р при пластическом кручении ). Мы можем заключить, что в общем случае, в телах с частичной пластической деформацией, граничные липип между упругой  [c.568]


Рис. 158. Основные типы пружин а — цилиндрическая винтовая пружина растяжения с закрытой (плотной) навивкой, б — ци-линдрическая винтовая пружина сжатия, навитая из проволоки круглого сечения, в — цилиндрическая винтовая пружина сжатия, навитая из прутка прямоугольного сечения, г — плоская спиральная пружина, д — коническая винтовая пружина сжатия, е — цилиндрическая винтовая пружина кручения, ж — телескопическая пружина, навитая нз полосы или ленты прямоугольного сечения, з — матрацная пружина с криволинейной характеристикой (про-грессивно-возрастающей). и — тарельчатые пружины Рис. 158. Основные <a href="/info/488641">типы пружин</a> а — <a href="/info/255444">цилиндрическая винтовая пружина растяжения</a> с закрытой (плотной) навивкой, б — ци-линдрическая <a href="/info/57076">винтовая пружина</a> сжатия, навитая из проволоки <a href="/info/205741">круглого сечения</a>, в — <a href="/info/255468">цилиндрическая винтовая пружина сжатия</a>, навитая из прутка прямоугольного сечения, г — <a href="/info/98358">плоская спиральная пружина</a>, д — <a href="/info/355172">коническая винтовая пружина</a> сжатия, е — <a href="/info/213250">цилиндрическая винтовая пружина кручения</a>, ж — <a href="/info/213727">телескопическая пружина</a>, навитая нз полосы или ленты прямоугольного сечения, з — матрацная пружина с криволинейной характеристикой (про-грессивно-возрастающей). и — тарельчатые пружины
Кручение относительно вертикальной осн. При возбуждении поперечных волн большой интерес представляет комбинация сил, показанная на рис. 6.3,г, поскольку в этом случае отсутствует излучение одольных волн. С учетом симметрии, применение этой комбинации к поверхности упругого полупространства только удвоит величину определяемых формулой (6.10) смещений без изменения характеристики направленности. Эксперименты с таким источником проводились Пекерисом и другими [118]. В работе [103] описывается импеданс грунта для кругового диска, поворачивающегося вокруг своей оси. Апплегэйт [6] построил и продемонстрировал источник, который передавал крутильное усилие на грунт. Маховое колесо массой ИЗ кг и частотой вращения 3,6 с- развивало энергию около 2250 Дж. Приводимые в движение соленоидом металлические блоки, сцепленные с помощью штырей с маховым колесом, внезапно прекращали вращение последнего. В результате вращательный момент передавался платформе, которая прикреплялась к грунту с помощью четырех металлических штырей. При возбуждении этим источником наблюдались рефрагированные поперечные волны на расстояниях около 60 м. Несмотря на специальные меры по обеспечению симметрии источника относительно вертикальной оси, наблюдались также заметные продольные колебания. Крутильный вибрационный источник описывался также Брауном >[26]. Существенным недостатком этого типа источников с точки зрения сейсморазведки на отраженных волнах является малая интенсивность излучения в субвертикальных направлениях.  [c.233]

А. К. Мрощинского Кр че ЕГйе металлических балок , в которой более доступно для проектировщиков изложена рассматриваемая теория расчета открытых тонкостенных стержней, достаточно полно изложена экспериментальная проверка этой теории, предложен целый ряд таблиц для облегчения практического приложения этой теории, предложена теорема для определения секториальных гео-. метрических характеристик, указан способ составления и приведен сортамент этих характеристик для применяемых в практике металлических прокатных профилей и выявлены рациональные типы различных профилей, находящихся в условиях изгиба и кручения.  [c.9]

В таблицах типа 7.1.1 обозначения предельных напряжений и характеристик чунствительности к концентрации напряжений даны с индексами а и т это означает, что они определены либо при осевом нагружении, либо при изгибе, либо при кручении. Установить вид нагружения можно по колонке 2.  [c.18]


Смотреть страницы где упоминается термин Типы кручения 686, 688, 692 — Характеристики : [c.38]    [c.146]    [c.150]    [c.215]    [c.178]   
Краткий справочник машиностроителя (1966) -- [ c.693 ]



ПОИСК



228 — Типы и характеристики



© 2025 Mash-xxl.info Реклама на сайте