Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интерференции определение

Контраст интерференции. Амплитуда оптических резонансов при взаимодействии света с пластинкой количественно характеризуется величиной контраста V (называемого также видностью полос интерференции). Определение контраста и выражения для вычисления Vr и Vt приведены в гл. 2.  [c.144]

Методы измерения на краску световой щели (на просвет) линейных отклонений интерференции определения угловых отклонений сообщающихся сосудов (гидростатический метод) натянутой струны коллимации и автоколлимации.  [c.644]


В псевдоожиженном слое взаимное расположение частиц, как правило, случайное. Определенный ближний порядок, возникающий вследствие высокой концентрации частиц, быстро нарушается из-за нестационарно-сти системы. В результате будет несущественным перераспределение энергии, вызванное интерференцией рассеянного соседними частицами излучения.  [c.133]

Условие Брегга трактуется обычно как условие отражения рентгеновского луча от определенной кристаллической плоскости, хотя, по существу, имеет место не отражение, а интерференция колебаний, распространяющихся от возбужденных электронов в атомах кристаллической решетки.  [c.529]

Величина интенсивности, как следует из выражения (4.8), определяется значением разности фаз. Следовательно, исследование интерференции волн сводится к определению разности фаз в точках их встречи.  [c.71]

Явление интерференции лежит в основе устройства приборов, называемых интерферометрами . С помощью интерферометров решают с высокой точностью такие технические и физические задачи, как измерение длин п углов, определение показателя преломления и его зависимости от разных внешних факторов и т. д.  [c.109]

Мы хотим предостеречь читателя от неправильных определений интерференции, в частности от формулировки "взаимодействие двух пучков". Хорошо известно, что такое взаимодействие (без участия среды) пренебрежимо мало и никакого отношения к пространственному перераспределению светового потока не имеет.  [c.177]

В этом случае для получения двух систем волн используют законы отражения и преломления. Обычно наблюдается интерференция между волнами, исходящими из действительного и мнимого изображений источника, или между волнами, расходящимися из двух мнимых изображений. Такое различие несущественно — волна, исходящая из реального источника, с помощью оптического устройства разделяется на две световые волны, интерферирующие в некоторой области. Использование мнимых изображений служит лишь удобным способом определения области перекрывания волн, где можно наблюдать интерференцию.  [c.194]

Выше было показано, что, используя один точечный источник света, можно каким-либо оптическим устройством разделить его излучение на два пучка, способных интерферировать друг с другом. При наличии двух независимых (некогерентных) источников света можно получить две стационарные интерференционные картины и с помощью какого-нибудь оптического устройства свести их в некоторой области пространства. В зависимости от условий опыта они будут создавать разные результирующие картины. Таким образом, в определенной области пространства наблюдается стационарное распределение освещенности, эквивалентное наличию какой-то интерференционной картины (/макс /мин) Конечно, в результате наложения двух картин интерференции может наблюдаться также равномерная освещенность экрана (/макс = /мин), эквивалентная отсутствию интерференции.  [c.197]


Интерферометрами называют оптические устройства, с помощью которых можно пространственно разделить два луча и создать между ними определенную разность хода. После их соединения наблюдается перераспределение потока световой энергии, т. е. явление интерференции.  [c.221]

Обычно с помощью интерферометров решают вполне определенные физические и технические задачи (например, измерение длин или углов, определение показателя преломления и т.д.). Наблюдение интерференционной картины становится не целью исследования, а средством проведения того или иного измерения. Поэтому оптическая схема интерферометра должна удовлетворять ряду дополнительных требований. Для повышения точности часто вводят значительную разность хода между интерферирующими пучками и работают в высоких порядках интерференции. В таких случаях используют относительно высокую степень монохроматичности излучения резко повышаются и требования к юстировке оптической системы. В дальнейшем рассказано также об исследованиях, в которых интерферометры применяют для изучения основных характеристик излучения (степени монохроматичности, длины волнового цуга и др.).  [c.221]

При анализе полученного результата выявляется зависимость разрешающей силы дифракционной решетки от общего числа штрихов, т.е. от числа интерферирующих пучков. В 5.7 было показано, что переход от интерференции двух волн к многолучевой интерференции приводит к концентрации излучения вблизи определенных направлений и к увеличению темных промежутков между максимумами, т. е. к увеличению разрешающей силы. Соотношение (6.86) выражает эту зависимость в явном виде.  [c.320]

Хотя изложение основ рентгеноструктурного анализа не является задачей этой книги, упомянем здесь об интерференционном методе исследования кристаллов, в котором используют дискретные рентгеновские спектры характеристические лучи) — резкие пики, появляющиеся на сплошном фоне рентгеновского излучения при больших ускоряющих потенциалах. Кристаллографическими исследованиями было установлено, что в любом кристалле можно обнаружить определенные плоскости, в которых атомы или ионы, составляющие его решетку, упакованы наиболее плотно. Такие плоскости отражают монохроматическое рентгеновское излучение, и, следовательно, может происходить интерференция волн, отраженных различными плоскостями. Очевидно, что усиление отраженной волны произойдет лишь под вполне определенным углом 0 (рис. 6.78). Если разность хода (А = АО + ОВ) равна целому числу длин волн, то  [c.351]

Возможность оптического определения сколь угодно малой скорости относительного движения двух тел представляет несомненный интерес для практики. Использование в таких опытах излучения лазера позволяет наблюдать интерференцию при большой разности хода, когда исследуемые тела удалены друг от друга на значительное расстояние.  [c.398]

Часто встречаются случаи, когда осуществляется интерференция световых пучков, в состав которых входит некогерентный свет. В месте наложения таких световых пучков некогерентные части световых колебаний, по самому своему определению, создают равномерно освещенный фон, и это ведет к снижению видимости (контрастности) интерференционной картины.  [c.68]

Наблюдение интерференции в естественном свете, для которого имеют место поперечные колебания всех направлений, также возможно, и, как правило, на опыте реализуется интерференция именно когерентных пучков естественного света. Для выяснения этого вопроса каждый из интерферирующих пучков естественного света представим в виде суперпозиции двух волн, ортогонально поляризованных и не связанных друг с другом никакими определенными фазовыми соотношениями. Условие когерентности пучков означает, что одинаково поляризованные волны имеют равные начальные фазы. Поэтому при наложении двух когерентных пучков естественного света формируются две независимые, но пространственно совпадающие интерференционные картины, отвечающие двум парам одинаково поляризованных волн.  [c.87]

Разобранные в настоящей главе случаи интерференции света дают возможность наблюдать это явление на специально осуществляемых опытах. Однако явление встречи двух или нескольких когерентных волн, между которыми наблюдается интерференция, имеет место, по существу, во всяком оптическом процессе. Распространение света через любое вещество, преломление света на границе двух сред, его отражение и т. д. суть процессы такого рода. Распространение света в веществе сопровождается воздействием световой электромагнитной волны на электроны (и ионы), из которых построено вещество. Под действием световой волны эти заряженные частицы приходят в колебание и начинают излучать вторичные электромагнитные волны с тем же периодом, что и у падающей волны. Так как движение соседних зарядов обусловливается действием одной и той же световой волны, то вторичные волны определенным образом связаны между собой по фазе, т. е. являются когерентными. Они интерферируют между собой, и эта интерференция позволяет объяснить явления отражения, преломления, дисперсии, рассеяния света и т. д. Мы познакомимся в дальнейшем с объяснением перечисленных явлений с указанной точки зрения. В настоящем же параграфе мы остановимся на одном частном случае из описанного ряда явлений.  [c.89]


Уменьшение видимости полос при интерференции немонохроматических пучков объяснялось в 21 иным способом, а именно, предполагалось, что они являются суперпозицией монохроматических пучков с различными частотами (или длинами волн). Естественно возникает вопрос о взаимоотношении спектрального подхода, изложенного в 21, и временного подхода, использующегося в данном параграфе. Для выяснения этого вопроса напомним, что строго гармоническое (монохроматическое) колебание, по самому своему определению, должно происходить бесконечно долго. Если колебание следует гармоническому закону в течение ограниченного промежутка времени, по истечении которого изменяются его амплитуда, частота или фаза (волновой цуг), то это модулированное колебание можно представить в виде суммы монохроматических колебаний с различными частотами, амплитудами и фазами. Но такое разложение волновых цугов на монохроматические составляющие и дает основу для представления об интерференции немонохроматических пучков. Итак, спектральный и временной подходы к анализу интерференции оказываются разными способами рассуждений об одном и том же явлении, —нарушении когерентности колебаний ).  [c.99]

Для определения индексов интерференции необходимо знать направление рассеянных от кристалла лучей, поэтому рассмотрим основные положения геометрической дифракции на пространственной решетке.  [c.38]

Метод рентгеновского гониометра. Рентгенограмма вращения не всегда позволяет получить полную информацию об интерференционной картине. Дело в том, что в некоторых случаях при исследовании методом вращения вследствие симметрии кристалла в одно и то же место фотопленки попадает несколько интерференционных лучей. Этого недостатка лишен метод рентгеновского гониометра. В этом методе используют монохроматическое излучение, кристалл вращают вокруг выбранной оси, кассета с цилиндрической пленкой движется возвратно-поступательно вдоль оси вращающегося кристалла, поэтому отражения разделяются по их третьей координате. Снимают не всю дифракционную картину, а с помощью определенного приспособления вырезают одну какую-нибудь слоевую линию, чаще всего нулевую (рис. 1,48). При таком методе съемки каждый интерференционный рефлекс попадает в определенное место на пленке и наложения рефлексов не происходит. С помощью такой развертки, используя сферы отражения, определяют индексы интерференции и по ним устанавливают законы погасания (см. выше). Затем по таблицам определяют федоровскую пространственную группу симметрии, т. е. полный набор элементов симметрии, присущий данной пространственной решетке, знание которого в дальнейшем облегчает расчеты проекций электронной плотности. Далее определяют интенсивности каждого рефлекса, по ним — значения структурных амплитуд и строят проекции электронной плотности.  [c.52]

Путь, пройденный оптикой в исследовании природы света,— от световых корпускул Ньютона до световых квантов (фотонов) Эйнштейна — напоминает виток спирали. Оптика снова пришла к корпускулярной концепции, но, разумеется, уже на новом уровне. Фотоны принципиально отличаются от ньютоновских световых корпускул прежде всего тем, что отнюдь не исключают волновых представлений. Уже в свойствах отдельного фотона отражается диалектическое единство корпускулярной и волновой концепций. Что же касается фотонных коллективов, то при определенных условиях они особенно ярко проявляют волновые свойства, обнаруживаемые в явлениях интерференции и дифракции света. Забегая вперед, заметим, что интерференционная картина, как оказалось, может наблюдаться и тогда, когда фотоны проходят через интерферометр поодиночке. Понимание этого принципиального факта возможно лишь на основе представлений квантовой физики. На этих вопросах мы специально остановимся в ч. И. Пока же рассмотрим свойства фотона (некоторые из них уже отмечались ранее), а затем поговорим о свойствах фотонного коллектива или, иными словами, о поведении фотона в коллективе.  [c.78]

Законы преломления и отражения, определяя направления отраженного и преломленного лучей, не дают никаких сведений об интенсивностях и фазах. Задачу определения интенсивностей и фаз отраженного и преломленного лучей можно решить, исходя из взаимодействия электромагнитной волны со средой. Согласно электронной теории, под действием электрического поля падающей волны электроны среды приводятся в колебания в такт с возбуждающим полем — световой волной. Колеблющийся электрон при этом излучает электромагнитные волны с частотой, равной частоте возбуждающего поля. Излученные таким образом волны называются вторичными. Вторичные Bojnibi оказываются когерентными как с первичной волной, так и мемаду собой. В результате взаимной интерференции происходит гашение световых волн во всех направлениях, кроме двух — в направлениях преломленного и отраженного лучей. В принципе можно, решая задачу интерференции, определить направления распространения, интенсивности и фазы обоих лучей. Однако решение ее, хотя и привело бы к результатам, согласующимся с опытными данными, представляется довольно сложным. Эту же задачу можно решить более простым путем,- используя систему уравнений Максвелла.  [c.45]

Зависимость видимости интерференционной картины от разности хода, а последней от длины когерентности позволяет экспериментально определить длину и время когерентности. Сущность этого метода заключается в определении пределыюй разности хода Ad при которой интерференция еще наблюдается.  [c.79]

Пусть имеем прозрачное тело ABD , поверхности АВ и D которого (рис. 5.12) образуют малый угол а. Для определения этого угла используем схему, изображенную на приводившемся ранее рис. 5.10, где вместо пластин А В и АВ помещена теперь клинообразная пластинка ABD . При освещении этой пластинки будем наблюдать интерференцию полос равной толщины. Пусть соседние максимумы, расположенные на расстоянш / друг от друга, наблюдаются при толщинах di и do, т. е.  [c.105]


Исследуем суммарную освещенность экрана I. Для ее определения надо сложить освещенности /1 и I2 (никако1Й интерференции нет, так как Sj и S<> — некогерентные источники). Имеем I == /1 + Iz, т.е.  [c.198]

Но такие условия наблюдения реализуются при соблюдении неравенства 2d < bh/2. Заменяя 5А = X/(2tga>), получаем искомую связь между допустимыми размерами источника, излучающего свет определенной длины волны X, и апертурой интерференции Б виде  [c.201]

Это неравенство показывает, что чем меньше апертура интерференции, тем больше допустимые размеры источника. Такое количественное соотношение находится в полном согласии с результатами описанных ранее опытов (отражение света от тонкой слюдяной пластинки, зеркало Ллойда), в которых уда-юсь наблюдать четкую интерференционную картину при больших размерах источника света. Как уже указывалось, апертура интерференции в этих опытах была очень мала. Становится также понятной роль дополнительной щели в опыте Юнга. Ведь произведение 2dtgo), определенное неравенством (5.31), связано с угловыми размерами источника света, ограничение которых и позволило Юнгу наблюдать интерференцию света от двух щелей (см. 6.5).  [c.201]

Все предыдущее исследование проводилось для некоторого выбранного направления колебаний излучающих атомов в источнике света, т.е. рассматривалось излучение вполне определенной поляризации. Не представляет труда распространить полученные выводы на случай поляризованного света, но здесь необходимо более тщательно исследовать вопрос об интерференции поляризованных лучей, в частности наложение интерференционных картин, создаваемых волнами, поляризованными во взаимно перпендикулярных направлениях. Здесь снова окажется полезным идеализированное устройство из двух параллельных пластин, отражающих свет и использованных при описании прост-ранс гвенной когерентности в 5.3.  [c.203]

Мы знаем, что интерференция может наблюдаться при разности хода Л Lkoi = сгко,. Определение этой предельной разнос ги хода и является способом измерения длины и времени когерен г ности для данного излучателя. Рассмотрим такие эксперименть подробнее.  [c.232]

Для управления делительной машиной, контроля и исправления ошибок в процессе нарезки решетки используют явление интерференции. Один из вариантов этого метода основан на том, что перемещение дифракционной решетки в процессе ее изготовления непрерывно измеряется автоматическим устройством, в котором датчиком линейного перемещения служит специальный интерферометр, состоящий из нарезаемой и эталонной ре-uieTOK, Далее действует сложная схема обратной связи, позволяющая регулировать перемещение нарезаемой решетки, на которую алмазным резцом наносят штрихи вполне определенного профиля (рис. 6.43). Применение интерференционного метода позволило практически исключить различные ошибки, служащие причиной возникновения ложных линий (духов) в спектре дифракционных решеток.  [c.301]

Два отверстия Pj и Р2 в непрозрачном экране А также делят на два пучка световой поток, исходящий из щели S (см. рис. 6.48). Эти два пучка затем соединяются в точке Р, и в результате пространственной когерентности такой системы на экране В возникает интерференционная картина. Если для обеих установок апертура 2м интерференции одинакова, то для определения видимости интерференционной картины на экране В, получившейся при взаимодействии пучков света от отверстий Р] и Р2, можно воспользоваться формулой (5.35) для щелевого некогерентного источника света. Так как V = sinxA , где параметр X определялся отношением ширины щели 2а к ширине интерференционной полосы Л/ = kDi/d, то х = 2nadi /.Di) и видимость интерференционной картины  [c.309]

На микроскопическом масппабе невозможно достоверно определить, чем является материя - волной или частицей. Например, свет при распространении в пространстве ведет себя как волна (явления отражения, дифракции, интерференции), при контакте же с большим количеством конденсированного вещества - как поток частиц (явление фотоэффекта). Элементарные частицы при столкновении могут аннигилировать с выделением энергии -электромагнитного излучения определенной частоты. Согласно принципу неопределенности Гейзенберга, в пределах атома невозможно одновременно точно определить Местоположение и импульс электрона. Он ведет себя подобно волне, распространяющейся внутри сферы с радиусом, равным радиусу атома. С другой стороны, на больших масштабах все конденсированное вещество состоит из элементарных частиц, и они ведут себя, как и положено частицам.  [c.138]

Я перенес главу, посвященную основным фотометрическим понятиям, во введение, желая использовать правильную терминологию уже при описании явлений интерференции и оставив в отделе лучевой оптики лишь вопросы, связанные с ролью оптических инструментов при преобразовании светового потока. Заново написаны многие страницы, посвященные интерференции, в изложении которой и во втором переработанном издании осталось много неудовлетворительного. Я постарался сгруппировать вопросы кристаллооптики в отделе VIII, хотя и не счел возможным полностью отказаться от изложения некоторых вопросов поляризации при двойном лучепреломлении в отделе VI, ибо основные фактические сведения по поляризации мне были необходимы при изложении вопросов прохождения света через границу двух сред, с которых мне казалось естественным начать ту часть курса, где проблема взаимодействия света и вещества начинает выдвигаться на первый план. Я переработал изложение астрономических методов определения скорости света и добавил некоторые новые сведения о последних лабораторных определениях этой величины. Гораздо больше внимания уделено аберрации света. Рассмотрены рефлекторы и менисковые системы Д. Д. Максутова. Значительным изменениям подверглось изложение вопроса о разрешающей способности микроскопа я постарался отчетливее представить проблему о самосветя-щихся и освещенных объектах. Точно так же значительно подробнее разъяснен вопрос о фазовой микроскопии, приобретший значительную актуальность за последние годы.  [c.11]

В соответствии с определением предыдущего параграфа мы говорим об интерференции волн, когда при их совместном действии не происходит суммирования интенсивностей. Условием интерференции волн одной и той же чяетоты яв.ляется их когерентность, т е. сохранение неизменной разности фаз за время, достаточное для наб (У0Деа.ИЯ,3 частности, монохроматические волны, т. е. вол ньГ, пор6ж даемые гармоническими колебаниями, когерентны и могут интерферировать (если, конечно, они имеют одинаковый период). Способность когерентных волн к интерференции означает, что в любой точке, которой достигнут эти волны, имеют место когерентные колебания, которые будут интерферировать. Мы будем для простоты предполагать, что обе волны одинаково линейно поляризованы. Результат интерференции определяется разностью фаз интерферирующих волн в месте наблюдения, а эта последняя зависит от начальной разности фаз волн, а также от разности расстояний, отделяющих точку наблюдения от источников каждой из волн.  [c.65]

Явление интерференции имеет место для всех видов волн, так что интерференционную картину можно получить от любых двух источников колебаний, но наиболее четко выраженные усиления и ослабления результирующих колебаний наблюдаются в том случае, когда источники обладают своего рода определенной синхронностью излучения, называемой когерентностьн). Когерентными считаются колебания одной частоты, разность фаз которых не меняется в течение рассматриваемого промежутка времени.  [c.11]


Голографические методы контроля. Методы основаны на интерференции световых волн. Источником световых волн являются оптические квантовые генераторы, позволяющие получать свет с определенной длиной волны (монохроматические волны) и в определенной фазе колебаний (когерентные волны). Использование лазеров (лазерных диодов) позволяет восстанавливать мнимое объемное изображение объекта в целом либо части этого объекта. Фиксируя на детекторе (фотопластинке или экранр монитора) наложенные изображения состояния объектов (например, без нагрузки и под нагрузкой), получают интерференционные картины, которые являются источником информации о наличии дефектов в объектах контроля. При этом интерференционные картины весьма чувствительны к незначительным перемещениям частей поверхности, которые появляются в области концентрации напряжений объекта контроля вследствие наличия в нем дефекта. Метод, основанный на голографический интерференции световых волн, применяется в основном для анализа напряженно-деформированно-го состояния сварных соединений и контроля за остаточными сварочными напряжениями.  [c.211]


Смотреть страницы где упоминается термин Интерференции определение : [c.51]    [c.78]    [c.85]    [c.117]    [c.395]    [c.117]    [c.251]    [c.206]    [c.237]    [c.361]    [c.254]    [c.259]    [c.48]    [c.124]   
Оптика (1985) -- [ c.148 ]



ПОИСК



Интерференция

Интерференция чистых тонов. Влияние на определение интервалов

Основные понятия и геометрические зависимости — Интерференция и подрезание зубьев. Определение



© 2025 Mash-xxl.info Реклама на сайте