Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Образование зародышей (зарождение) границ

Зарождение новой фазы происходит преимущественно на границах зерен матрицы, так как свободная энергия образования скопления атомов на границе зерна меньше, а следовательно, частота образования зародышей больше, чем внутри кристалла. Кроме того, образование зародышей на границах зерен облегчается тем, что атомы растворенного вещества могут проникать в скопления атомов на границе зерна быстрее, чем внутри зерна напряжения при фазовом превращении, противодействующие образованию зародышей на границе зерна, обычно рассасываются быстрее, чем в других частях кристалла  [c.11]


Диффузионный слой образование зародышей (зарождение) в процессах выделения 248 на вершинах зерен 242 на поверхности межзеренных границ 242 на ребрах зерен 242 Образование субзерен 451  [c.479]

Возникновение пор и их развитие — сложный процесс зарождения газовой фазы в жидкой среде. В сплошной жидкости образование зародыша газовой фазы, способного к дальнейшему развитию, т. е. больше критических размеров, — процесс маловероятный. Чаще всего эти зародыши возникают на границе раздела с малым радиусом кривизны — включения или же зародыши попадают в металл сварочной ванны извне и начинают расти, поглощая выделяющийся водород.  [c.346]

MOB, что затрудняет присоединение атомов друг к другу в процессе образования зародышей критического размера. Таким образом, зависимость скорости образования зародышей от степени переохлаждения будет иметь максимум. С повышением температуры при нагреве выше Гр подвижность атомов будет возрастать, что обусловливает монотонное нарастание скорости образования зародышей с увеличением степени перегрева. Рост новой фазы происходит за счет исходной путем относительно медленной миграции межфазной границы в результате последовательного перехода атомов через эту границу. Изменение составляющих энергии при росте фазы, аналогичное ее изменениям при образовании зародышей, также обусловливает зависимость скорости линейного роста от степени переохлаждения, имеющ,ую максимум. При этом максимум скорости линейного роста сдвинут в сторону меньших переохлаждений по сравнению с максимумом скорости образования зародышей. При данной постоянной температуре процесс протекает изотермически и относительный объем образующейся новой фазы V увеличивается со временем. Общая скорость фазового превращения определяется суммой скоростей зарождения и роста новой фазы (рис. 13.3).  [c.494]

Анализ формул (И —14) показывает, что уменьшение работы образования зародышей при самопроизвольной кристаллизации и кристаллизации на примесях, а следовательно, и увеличение числа центров кристаллизации может быть достигнуто за счет снижения поверхностного натяжения на границе расплав — кристалл, увеличения переохлаждения и прикладываемого давления. Все эти факторы приводят к увеличению скорости зарождения центров кристаллизации и способствуют образованию мелкозернистой структуры металлов и сплавов.  [c.22]


Полиморфные превращения характеризуются изменением объема превращение олова сопровождается увеличением объема на 25,6%. Объемные изменения и связанная с этим затрата энергии на деформирование тормозят зарождение и рост кристаллов новой фазы, особенно внутри образца. В связи с этим почти все полиморфные превращения начинаются преимущественно с поверхности образца, границ зерен, плоскостей сдвига и других участков местной неоднородности при этом работа образования зародыша меньше, а вероятность образования зародыша больше, чем внутри зерна [66].  [c.16]

Распад твердого раствора или полиморфное превращение протекает с образованием фаз, имеющих состав, отличный от исходной матричной фазы, поэтому для гомогенного возникновения зародыша новой фазы критического размера необходимо наличие флуктуации концентрации. Чаще зародыши образуются в дефектных местах кристаллической решетки, на границах зерен, в местах скопления дислокаций, на включениях примесей и т. д. (гетерогенное зарождение). Это объясняется уменьшением работы образования зародышей (по сравнению с гомогенным зарождением), ускорением диффузионных процессов и тем самым облегчением получения концентрационных флуктуаций, необходимых для зарождения новой фазы. Рост зародышей новой фазы происходит неупорядоченным переходом атомов через границу раздела из исходной фазы во вновь образуемую.  [c.46]

Гетерогенное зарождение обычно и при фазовых превращениях в твердых телах. Границы зерен, меж-фазные границы, поверхность, дислокации — образования по сравнению с идеальным кристаллом энергетически невыгодные. Следовательно, очень вероятно, что они станут местами предпочтительного образования зародышей.  [c.212]

Центры гетерогенного зарождения в случае некогерентных и когерентных выделений могут быть различными. В первом случае превалирующее значение имеет выигрыш в поверхностной энергии и подходящим местом для гетерогенного образования зародыша может явиться граница зерна или поверхность включений. Для когерентного выделения решающее значение будет иметь уменьшение энергии упругой деформации. При наличии искажений постоянная решетки различна в различных участках твердого раствора и в одних участках соответствие с решеткой выделения будет больше, чем в других. Центрами внутренних напряжений (искажений), в частности, служат дислокации они могут быть благоприятными центрами возникновения когерентных выделений.  [c.176]

В работе [ 57] показано, что при небольшой плотности дислокаций предпочтительными местами образования зародыша новой фазы могут оказаться границы зерен, как области с повышенной свободной энергией. Так, подсчитано, что работа образования зародыша на единичной дислокации в два раза выше, чем при зарождении на границах зерен. Однако, если создать в теле определенную плотность дислокаций, зарождение на них становится определяющим.  [c.30]

Ранее было показано, что в низкоуглеродистой отожженной стали на начальных стадиях а. -> 7-превращения зародыши аустенита, как правило, возникают не в перлитных участках, а в ферритной матрице, чаще всего на границах зерен и субзерен. Можно принять два варианта зарождения центра 7-фазы в этих участках на поверхности раздела феррит - карбид, если на месте образования зародыша аустенита находилась частица третичного цементита, или непосредственно в ферритной матрице, флуктуационно обогащенной углеродом. Рассмотрим скорость роста аусте-нитного центра для обеих схем зарождения (рис. 34).  [c.72]

Перлитное превращение переохлажденного аустенита происходит в области температур, где скорости диффузии достаточно высокие и процесс образования перлита определяется скоростями зарождения центров кристаллизации и их роста. Оба фактора зависят от степени переохлаждения. Образование зародышей цементита происходит на границе зерен аустенита. При этом аустенит, прилегающий к зародышам цементита, обедняется углеродом, что приводит к образованию зародышей феррита. От одного центра идет рост чередующихся пла-  [c.41]


Согласно гипотезе гомогенного (самопроизвольного) зарождения критический зародыш мартенсита образуется в переохлажденном аустените вследствие флуктуационных процессов. Например, предполагается, что мартенсит зарождается в объемах аустенита, обедненных углеродом, появляющихся вследствие флуктуаций. Эта гипотеза отвергает какую бы то ни было роль в зародыше-образовании поверхностей раздела (границы зерен, межфазные границы) и дефектов кристаллического строения.  [c.11]

Трещины, возникающие в локальной пластической зоне перед концентратором напряжений, формируются не на границе пластической зоны, а на некотором расстоянии позади нее, где пластические деформации достаточны для образования зародыша трещины. Одним из главных достоинств модели нагруженных волокон, в противоположность модели простого роста трещины, контролируемого растягивающими напряжениями, оказалась возможность зарождения трещины позади этой границы при низкотемпературных испытаниях образцов с V-образным надрезом с углом 45°. Однако анализ распределения напряжений в таких пластических зонах с помощью метода конечных элементов [9] показал, что максимум растягивающих напряжений лежит на довольно значительном расстоянии позади границы (см. гл. Ill, раздел 18), так что фактически эти наблюдения не дают ответа на вопрос о предпочтительных механизмах зарождения трещин.  [c.186]

Перлитное (эвтектоидное) превращение. В области температур Ai в случае не -слишком сильного переохлаждения (приблизительно до 550° С) превращение аустенита начинается с образования центров зарождения цементита (карбида) по границам зерен аустенита. Центры зарождения цементита вследствие направленной в их стороны диффузии углерода быстро увеличиваются в длину и в ширину, однако их рост в толщину происходит медленно, вследствие чего образуются пластинки цементита. В пространстве между зернами цементита содержание углерода в аустените уменьшается, и аустенит превращается в феррит. В дальнейшем идет рост пластин цементита и феррита. Структуру, представляющую неоднородную смесь, состоящую из пластин феррита и цементита, называют перлитом. Чем больше степень переохлаждения, тем больше количество и меньше размер возникающих зародышей новых фаз, скорость роста которых замедляется из-за уменьшения диффузии. Поэтому зерна цементита становятся все тоньше и тоньше и, кроме того, толщина феррита между ними уменьшается таким образом возникает все более тонкий перлит. Толщина пластинок, находящихся в перлите, в зависимости от температуры превращения колеблется от 0,2 до 10 мкм. Различные по величине виды пластинчатого перлита (эвтектоида) называют просто перлитом, причем даже тогда, когда пластинчатая структура более тонкого перлита может быть различима только при  [c.133]

Первичная рекристаллизация заключается в образовании зародышей и росте новых зерен с неискаженной кристаллической решеткой. Зародыши новых зерен возникают у границ и особенно в местах пересечения границ зерен, пачек скольжения двойников. В местах, связанных с наибольшими искажениями решетки при наклепе, происходит перемеш,ение атомов, восстановление решетки и возникновение зародышей новых равноосных зерен. Вначале процесс протекает медленно, происходит зарождение центров кристаллизации, затем образуются мелкие зерна, которые растут и входят в непосредственное соприкосновение друг с другом.  [c.17]

В принципе образование стабильного зародыша новой фазы может происходить и в областях кристалла, не содержащих дефектов, в результате возникновения серии благоприятных флуктуаций (гомогенное зарождение), однако в большинстве случаев зародыши в твердой фазе образуются на границах зерен, на дефектах упаковки, дислокациях и т. п., где работа образования зародыша меньше. Образование зародыша в классическом смысле может не требоваться вообще, если в системе имеются какие-либо подходящие готовые зародыши или если такие зародыши могут образовываться из существующих дефектов без термической активации. Кроме того, зародыши, которые неустойчивы при данных условиях из-за того, что они имеют размер меньше критического (докритические зародыши, или эмбрионы), при резком изменении температуры могут стать закритическими. Этот способ зарождения иногда называют атермическим в отличие от термически активируемого образования зародышей.  [c.228]

Протекание многих превращений в твердом состоянии, которые начинаются с образования зародышей, зависит от термически активируемого перемещения атомов, необходимого для последующего роста этих зародышей. В типичных превращениях этого рода новая фаза растет за счет старой путем относительно медленной миграции межфазной границы, скорость которой сильно зависит от температуры. Реакция вплоть до завершения протекает изотермически при некоторой фиксированной температуре, и претерпевшие превращение области обычно не испытывают сколько-нибудь существенных изменений формы. Превращения этого рода известны под названием процессов зарождения и роста в отличие от мартенситных превращений, которые наблюдаются только в твердом состоянии. Такая классификация довольно неудачна, поскольку и в случае мартенситных превращений рост также начинается с образования зародышей.  [c.230]

Зародыши, образуюш иеся на межзеренных границах, вовсе не обязательно возникают равномерно по всей поверхности межзеренных границ (т. е в местах соединения двух зерен), так как, вероятно, энергия образования зародыша критического размера еще меньше на ребрах и на вершинах зерен (т. е. в местах стыка 3 или 4 зерен). Однако эти места с наинизшей критической свободной энергией образования зародышей не обязательно оказывают наибольшее влияние на общую скорость зародышеобразования, поскольку общее число атомов, которые могут участвовать в процессе образования зародышей, уменьшается с уменьшением мерности мест зарождения. Таким образом, при рассмотрении образования зародышей на поверхности межзеренных границ множитель iVp в уравнении (4), вероятно, следует заменить на N b— число атомов на единицу объема межзеренных границ.  [c.242]


Когда в результате превращения образуется двухфазный продукт (например, двухфазный пластинчатый агрегат с некогерентной поверхностью раздела), скорость образования зародышей может зависеть от времени по совершенно иным причинам. Хотя такие превращения связаны с изменением состава, имеет смысл кратко остановиться на этом вопросе. Критические условия для роста упомянутого агрегата определить очень трудно, поскольку при этом образуется по крайней мере два кристалла по одному для каждой из возникающих фаз. Предположим, что одна из фаз зарождается на границах зерен, а вторая — на поверхности образовавшихся частиц первой фазы с постоянной скоростью относительно единицы площади такой поверхности. Общая скорость зарождения будет тогда иметь временную зависимость, равную временной зависимости увеличения площади поверхности этой первой фазы. В случае постоянной скорости образования зародышей первой фазы и параболического закона роста этих зародышей общая ско-  [c.247]

В целом непрерывное выделение наблюдается в твердых растворах с малым пересыщением или в случав значительной энергии, связанной с несоответствием решеток фаз, а прерывистое выделение — в противоположных случаях. Зарождение труднее осуществляется при прерывистом выделении рост же в этом случае происходит со значительно большей скоростью вследствие постоянства и сравнительно небольшой длины эффективных путей диффузий и возможности осуществления быстрой диффузии вдоль границы ячейки. Таким образом, условиями, способствующими непрерывному выделению, являются как раз те, в которых затруднено зарождение в тех же случаях, когда может произойти образование зародышей ячеек, преобладает, по-видимому, прерывистое выделение. В некоторых сплавах, таких, например, как сплавы свинца и олова, почти всегда наблюдается прерывистое выделение. В некоторых случаях на начальной стадии наблюдается непрерывное выделение, общее или локализованное, а в наиболее благоприятных случаях все превращение может идти этим путем.  [c.292]

Естественно, что для объяснения механизма зарождения полостей особое внимание было обращено на физические явления, способствующие снижению свободной энергии поверхностей раздела, прежде всего за счет увеличения плотности дефектов по границам зерен. Наибольший интерес для случая низкотемпературной межкристаллитной хрупкости представляют теории, связывающие образование зародышей полостей и их последующий рост с пересыщением металла вакансиями и их движением к границам зерен под действием градиента и напряжения (см. рис. 70) [2,85].  [c.156]

Облегчение зарождения на границах зерен исходной фазы можно объяснить так же, как и предпочтительное зарождение кристаллов на включениях в расплаве. Это явление можно трактовать и несколько по-иному при образовании зародыша новой фазы исчезает некоторая часть межзеренной границы и высвобождающаяся при этом избыточная энергия межзеренной границы исходной фазы Д/ гр идет на образование зародыша новой фазы, т. е. на построение межфазной границы и компенсацию возникающей упругой энергии. Выражение (25) можно для этого случая записать в такой форме  [c.135]

Все факторы, вызывающие упорядочение атомного строения по границам зерен, затрудняющие образование сдвигов по этим границам и способствующие вовлечению в пластическую деформацию тела зерна, повышают стойкость металла против образования холодных трещин, затрудняя их зарождение. Такое же влияние оказывают факторы, исключающие или ослабляющие возможность образования зародышей холодных трещин от неметаллических включений, микроскопических горячих трещин-надрывов и т. п.  [c.251]

Зародыши обычно образуются на границах зерен и субзерен, в скоплениях дислокаций, включениях, порах, что связано с уменьшением затрат на приращение поверхностной энергии. Распад также интенсифицируется после деформации, которая повышает плотность дислокаций. При медленном охлаждении и малой степени переохлаждения образуются близкие к равновесию стабильные фазы с некогерентными границами раздела. Для них характерно гетерогенное зарождение на высокоугловых границах зерен и скоплениях вакансий (кластерах). В результате возможно образование сетки выделяющейся фазы по границам зерен.  [c.498]

Различают рекристаллизацию 1) обработки 2) собирательную 3) вторичную. Рекристаллизация обработки заключается в зарождении и росте новых зерен на базе старых деформированных зерен структуры. Этот процесс соответствует участку bed на рис. 63, б. В температурном интервале Ьс возникают единичные новые зерна, а в интервале d процесс заканчивается образованием большого числа мелких равноосных зерен. Зародыш рекристаллизованного зерна возникает в результате диффузии небольшой группы атомов в наиболее деформированных объемах и на границах зерен струк-  [c.84]

Образование зародышей на дислокащ1ях может быть рассмотрено как гетерогенное в рамках классической теории зарождения. Каталитическое действие дислокаций можно учесть введением предположения о том, что свободная энергия части существующей вокруг дислокации искаженной области, которая уничтожается при превращении, передается зародышу, за счет чего энергия его образования понижается. Иными словами в этом случае используется та же предпосылка, что и при образовании зародыша на границе зерна [17].  [c.29]

Дефекты, созданные пластической деформацией, весьма устойчивы и сохраняются в течение длительного времени при нагреве в области суб-критических температур. Так, при 600°С полное снятие наклепа достигается лишь после 3,5 ч, а при 700°С - после 1,5-ч вьщержки [ 74]. Обращает на себя внимание то обстоятельство, что повышенная твердость сохраняется и при протекании начальных стадий рекристаллизации. Так, в деформированной стали 20 после вьщержки при 700°С в течение 30 мин рекристаллизация проявляется как рентгенографически (на линиях появляются точечные рефлексы), так и металлографически, а твердость сохраняется на уровне НВ 240 при НВ 137 в отожженном состоянии. При этом, кяк видно из рис. 25, а -> -превращение заметно ускоряется по сравнению с неотпушенной сталью (ср. кривые 1 я 3). По-видимому, это связано с появлением большого количества субграниц вследствие рекристаллизации ферритной матрицы и сфероидизации карбидов, тго, как известно, облегчает зарождение новой фазы, поскольку гетерогенное образование зародыша на границах требует меньшей энергии. Получение же при этом того же предельного количества аустенита, что и для неотпущенной стали, свидетельствует о сохранении при указанном отпуске значительной части искажений решетки. Удлинение выдержки, естественно, снижает избыточную энергию системы и приводит к уменьшению предельного количества аустенита (см. рис. 25, кривые 4-6).  [c.56]

Механические свойства аморфных металлов обладают повышенной стойкостью по отношению к нейтронному облучению. Приведены также отдельные данные по ускоряющему влиянию электронного облучения на кристаллизацию. Следует отметить, что в общем случае облучение электронами высокой энергии может влиять как на скорость образования зародышей при кристаллизации, так и на их рост. В случае широко известного сплава FeMNi oPuBe облучение электронами не оказывает заметного влияния на кинетику кристаллизации, которая, очевидно, лимитируется диффузней по границам раздела, но приводит к увеличению скорости зарождения, которая в свою очередь определяется объемной диффузией.  [c.20]

Рассмотрим в свете сказанного вопрос о местах зарождения аустенит-ных участков. Как уже было отмечено, наблюдения многих авторов свидетельствуют о гетерогенном зарождении у-фазы. Однако возникновение аустенита вовсе не обязательно должно быть свя а1 по именно с поверхностью раздела феррита и карбидов, поскольку пред варительное значительное обогащение а-фазы углеродом не является необходимым условием для протекания а 7-превращения. Очень существенную роль в этом процессе играет само повышение свободной энергии на границах, в том числе на границах феррита, что облегчает формирование зародыша новой фазы в этих местах [17]. Именно поэтому, как указывали авторы цитированных выше работ [5 — 7], как правило, зародыш аустенита возникает не просто на поверхности раздела феррит-карбид, а в тех местах, где карбидные частицы располагаются по границам зерен. Эти места являются предпочтительными для образования у-фазы как в связи с присуствием самой поверхности, обеспечивающей возможность гетерогенного образования зародыша, так и в связи с концентрационными изменениями, которые, безусловно, облегчают образование зародышей 7-фазы в этих местах. Подробнее вопрос о местах формирования 7-фазы в pasHbix условиях будет обсужден в гл. III.  [c.18]


При скорости нагрева 60 - 100°С/мин для всех вариантов исходной структуры образование 7-фазы начинается в низкокремнистых участках матрицы, причем преимущественными местами зарождения аустенитных кристаллов являются стыки и границы зерен феррита, а не межфазные поверхности раздела феррит - графит, несмотря ка наличие в образцах серий Б и В мелких графитных включений, расположенных в обедненных кремнием областях (рис. 36). Поскольку эти включения обладают повышенной растворимостью и обеспечивают пересыщение углеродом прилегающих областей ферритной матрицы в соответствии с флуктуацион-ной теорией, следовало ожидать образования зародышей 7-фазы именно здесь. Тем не менее аустенит в первую очередь появляется в менее обогащенных углеродом областях ферритной матрицы, на границах зерен и субзерен. Эти данные свидетельствуют о том, что в чугуне, так же как и в стали, образование аустенита по границам зерен связано прежде всего с их неустойчивостью с термодинамической точки зрения. Концентрационные же изменения играют вторичную роль, хотя, несомненно, оказывают влияение на а - 7-пре-вращение.  [c.77]

Явление ориентированного образования зародышей новой фазы объясняется с привлечением энергетических представлений, согласно которым форма и ориентировка этих зародышей в анизотропной среде должны соответствовать минимуму поверхностной энергии при данном объеме, а минимум поверхностной энергии обеспечивается при максимальном сходстве в расположении атомов на соприкасающихся гранях старой и новой фаз (принцип Конобеевского — Данкова). По данным Д. Мак Лина, на когерентной границе а- и 7-фаз поверхностная энергия уменьшается в 3 — 4 раза по сравнению с теми же значениями в случае неориентированного зародыша. В связи с этим критический размер когерентного зародыша аустенита на порядок меньше, чем некогерентного. Естественно, что это приводит к резкому увеличению вероятности образования когерентного зародыша. Выполненные И.Н. Ки-диным, М.А. Штремелем и В.И. Лизуновым расчеты показали, что вероятность появления некогерентного зародыша ничтожно мала по сравнению с когерентным. При этом, в соответствии с изложенным в гл. П, в основном реализуется гетерогенное зарождение "у-фазы, связанное с меньшими затратами энергии.  [c.85]

Зарождение критического зародыша цементита на границе зерен облегчено по следующим причинам. При образовании зародыша цементита исчезает некоторая часть исходной менгзеренной границы, т. е. часть границы с более высоким уровнем знергии. Это сопровождается высвобождением свободной энергии, которая расходуется на совершение работы образования зародыша. Следовательно, энергетические затраты системы на образование критического зародыша цементита при возникновении его на границе зерен исходного аустенита меньше, чем при образовании зародыша внутри зерна.  [c.8]

Гипотезы гетерогенного (несамопроизвольного) зарождения мартенсита базируются на положении о возможности образования зародышей мартенсита на готовых подложках (границы зерен, межфазные границы, поверхность нераст-ворившихся частиц) и на дефектах кристаллического строения (дислокации, дефекты упаковки).  [c.11]

Аустенитизация. Для того чтобы в стали происходили превращения, описанные Выше, необходимо начинать процесс термической обработки из аустенитного состояния. Аустеиит в стали возникает не толькр в процессе первичной кристаллизации и затвердевания при охлаждении, но и во время нового нагрева полностью охлажденной Стали. В процессе нагрева аустеиит образуется из продуктов распада (феррита, перлита, карбидов и т. д.), возникших ранее. При достижении температуры A i начинается превращение перлита (эвтек-тоида) в аустенит, которое представляет собой процесс, идущий одновременно с изменением кристаллической решетки и диффузией, причем из феррита, содержащего 0,025% С, и цементита, содержащего 6,67% С, образуется аустенит, содержащий приблизительно 0,8% С. Это йревращение начинается с образования центров зарождения новой фазы по границам зерен феррита и цементита и продолжается с роСтом устойчивых зародышей. Здесь действительно утверждение, что чем больше перегрев (по отношению к критической температуре превращения), тем большее количество зародышей меньшего размера будет способно к росту и тем быстрее начнется и протечет превращение или же уменьшится скрытый (инкубационный) период.  [c.136]

Величину предэкспоненциального множителя для гетерогенного зарождения во всех случаях трудно оценить, так как механизм взаимообмена атомов, образующих эмбрионы, с другими атомами довольно плохо известен. Однако в первом приближении разумно принять, что число атомов, участвующих в процессе зародышеобразования, пропорционально 6/L, 8IL) и (8/L) для зародышей, образующихся на поверхности межзеренных границ, на ребрах зерен и на вершинах зерен соответственно (здесь б — толщина границы, L — средний диаметр зерна). Величина малых числовых множителей, служащих коэффициентами пропорциональности и зависящих от геометрии и взаимного расположения зерен, не известна сам же факт функциональной зависимости числа атомов, участвующих в зарождении, от 6/L несомненен. Число атомов на единицу объема, которые могут принять участие в образовании зародышей на дислокационных линиях, будет равно ар где р представляет собой плотность дислокаций (т. е. общуй длину дислокационных линий в единице объема), а малый численный коэффициент ос дает число атомов в поперечном сечении ядра дислокации.  [c.242]

На рис. 23 виден светлый выступ на левом зерне, почти полностью свободный от дислокаций. Справа от него в соседнем зерне видны темные сплетения дислокаций с высокой плотностью. Мигрирующая граница выступа выметает эти дислокации. Выступ отделен от своего зеряа довольно резкой границей, левее которой плотность дислокаций высокая. Прорастание почти свободного от дислокаций крупного субзерна в соседнее зерно с повышенной плотностью дислокаций создает в нем зародыш рекристаллизации. Механизм зарождения рекристаллизованных зерен путем вызванной наклепом миграции отдельных участков (размером порядка 1 мкм) уже существующей высокоугловой границы наблюдали в алюминии, меди, серебре, никеле и железе после малых и средних деформаций. После больших деформаций основным становится другой механизм зарождения рекристаллизованных зерен, связанный не с выгибанием существующих, а с образованием новых высокоугловых границ.  [c.56]

Наличие движущей силы при любой температуре ниже означает, что зарождение должно происходить при сколь угодно малом переохлаждении жидкости нйже температуры Т . Однако малые частицы твердой фазы не обязательно будут стабильны из-за повыще-ния свободной энергии, связанного с зарождением границы раздела фаз. То есть любой новой фазе системы соответствует зародыш критического размера, до образования которого существование новой фазы термодинамически невыгодно, так как требует увеличения свободной энергии системы.  [c.95]

Из изложенного выше видно, что наиболее вероятно образование зародышей, состоящих в основном из FeO и МпО. Однако из теории электрокапиллярных явлений следует [3], что нри прохождении тока через границу между металлом и электролито м, когда последний содержит много ионов данного металла, потенциал металла почти не меняется. Следовательно, если образующиеся зародыши будут отличаться повышенной концентрацией FeO, то наложение на систему внешнего электрического поля не должно заметно изменить условия их возникновения. При наличии в оксидной фазе значительного иоличества МпО прохождение тока через границу включение — металл также мало влияет на величину межфазного напряжения, о чем свидетельствуют проведенные нами опыты (ом. рис. 8). Таким образом, в момент зарождения неметаллических включений прохождение тока через сварочную ванну, по-видимому, не должно оказывать существенного влияния на их образование. Следует отметить, что на зарождение неметаллических включений в сварочной ванне может влиять, как и при образовании зародышей в бетоле [66], магнитное поле.  [c.51]

Образование пор в оварных соединениях может происходить в результате возникновения газовых зародышей на границе расплавленный металл — расплавленный шлак и перехода их в объем металла, а также при образовании зародышей в объеме металла на границе с жидкими неметаллическими включениями. Поскольку зарождение пузырька в жидкости связано с преодолением сил молекулярного сцепления, то он будет развиваться более интенсивно в сторону той фазы, которая окажет меньшее сопротивление его росту. Такой фазой, вследствие меньшей силы связи между атомами, будет шлак. Сила межатомного взаимодействия характеризуется величиной поверхностного натяжания, которое, как известно, представляет собой рост свободной энергии системы вследствие частичного разрыва связей атомов, находящихся на поверхности.  [c.93]

Превращения при распаде твердого раствора протекают с образованием фаз, имеющих состав, отличный от исходной матричной фазы. Поэтому для гомогеЕиюго возникновения зародыша новой фазы критического размера необходимо наличие флуктуаций энергии и концентрации. Чем больше степень переохлаждения, тем меньше критический размер зародыша и требуемые для его образования флуктуации энергии и концентрации. Чаще зародыши образуются в дефектных местах кристаллической решетки, на границах зерен, в местах сконления дислокаций, на включениях примесей и т. д. (гетерогенное зарождение). Это объясняется уменьшением работы образования критического зародыша (по сравнению с гомогенным зарождением) и его размеров.  [c.103]


В работе [101] расс.матривается механизм зарождения и формирования спиральных доменоп. Авторы показывают, что при определенных условиях можно добиться формирования одиночного изогнутого полосового домена, из которого затем возможен рост спирального домена, хотя и не исключен другой вариант - последующее образование ветвящейся доменной системы. Экспериментально определен интервал значений внешнего магнитного поля, в котором происходит каазикристаллическое образование спирального домена из зародыша, имеющего вид одиночного витка. Механизм формирования спирального домена обусловлен различием полей роста полосового домена с изогаутыми и плоскими доменными границами.  [c.203]


Смотреть страницы где упоминается термин Образование зародышей (зарождение) границ : [c.493]    [c.207]    [c.79]    [c.242]    [c.164]    [c.64]    [c.118]    [c.97]   
Физическое металловедение Вып II (1968) -- [ c.242 ]



ПОИСК



Зародыш

Зарождение (образование зародышей)

Зарождение (образование зародышей) поверхности межэеренных границ

Образование зародышей

Пор зарождение



© 2025 Mash-xxl.info Реклама на сайте