Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхность раздела некогерентная

В случае некогерентной поверхности раздела, когда выделение не испытывает деформацию сдвига, энергия искажений будет наименьшей, если частица выделения имеет форму очень тонкой  [c.227]

Когда в результате превращения образуется двухфазный продукт (например, двухфазный пластинчатый агрегат с некогерентной поверхностью раздела), скорость образования зародышей может зависеть от времени по совершенно иным причинам. Хотя такие превращения связаны с изменением состава, имеет смысл кратко остановиться на этом вопросе. Критические условия для роста упомянутого агрегата определить очень трудно, поскольку при этом образуется по крайней мере два кристалла по одному для каждой из возникающих фаз. Предположим, что одна из фаз зарождается на границах зерен, а вторая — на поверхности образовавшихся частиц первой фазы с постоянной скоростью относительно единицы площади такой поверхности. Общая скорость зарождения будет тогда иметь временную зависимость, равную временной зависимости увеличения площади поверхности этой первой фазы. В случае постоянной скорости образования зародышей первой фазы и параболического закона роста этих зародышей общая ско-  [c.247]


Для построения количественной теории, основанной на вышеизложенной концепции, необходим расчет упругой энергии заключенного в матрице кристалла. Если предположить, что матрица упруго изотропна, расчет этот для эллипсоидального включения может быть проведен путем рассмотрения следующей последовательности мысленных операций (Эшелби [29]). Вырежем из матрицы некоторый объем а-фазы и дадим ему возможность превратиться в р-фазу. Приложим теперь к поверхности этого кристалла напряжения, которые возвратят его размер и форму к размеру и форме полости в матрице. Поместим нашу р-фазу в эту полость, сварим поверхности раздела и дадим напряжениям возможность релаксировать. Таким путем мы оценим упругую энергию при когерентном превращении. Если два кристалла некогерентны, то в расчет принимается только изменение объема в этом случае можно считать, что полость заполнена сжимаемой жидкостью, объем которой равен нормальному объему р-кристалла.  [c.336]

В зависимости от строения поверхности раздела между выделением и матрицей различают три типа. выделений полностью когерентные, частично когерентные и некогерентные (рис. 166).  [c.285]

Для некогерентного режима (сложение интенсивностей пучков разных порядков) при падении под углом выражения (2.10), (2.11) преобразуются следующим образом применяются выражения для и с учетом ненулевого угла падения, а вместо толщины Н в экспоненту необходимо подставить Н/со8/3, где /3 — угол между нормалью к поверхности и направлением распространения света в пластинке после преломления на границе раздела. Регистрируемая интенсивность света одинакова в случаях пространственного разделения или перекрытия пучков разных порядков на фотоприемнике.  [c.42]

Фильтрующие свойства единичного приемника. Из рассмотренного в данном разделе осредняющего действия приемника звукового давления, работающего в статистическом некогерентном поле при детерминированном или случайном неоднородном распределении чувствительности по его поверхности, следует, что основой этого эффекта является способность приемника осуществлять пространственную фильтрацию компонент различного масштаба. Поскольку временные частоты турбулентного поля и его пространственные масштабы связаны уравнениями движения, можно использовать избирательную реакцию приемника звукового давления для применения его в качестве фильтра пространственных частот. В этих целях нужно построить передаточную функцию приемника в термину пространственных частот, подобно тому, как это сделано для временных частот в форме уравнения (3.19). В данном случае задача в определенной мере упрощается, поскольку располагая передаточной функцией (3.19), можно получить искомую пространственную передаточную функцию путем Фурье-преобразования (3.19) по определенному пространственному параметру. В зависимости от выбора того или иного параметра разложения можно получить представление о способности приемника осуществлять фильтрацию воздействующего на его вход процесса по этому параметру. Удобно в качестве параметров разложения выбрать собственные функции приемника х(х , Хг ), где в предположении, что приемник имеет прямоугольную форму в плане,  [c.98]


Имеются некоторые соображения относительно роли термической стабильности преимущественно ориентированных поверхностей раздела в эвтектике под воздействием напряжений. Возможно, полукогерентные поверхности раздела (стабильные) могут превращаться в некогерентные (нестабильные) из-за концентраторов напряжений, создаваемых дислокациями на границах.  [c.384]

При этом большинство легирующих добавок переходит в твердый раствор г. ц. к., как это видно на рис. 85. В результате быстрого охлаждения до комнатной температуры может быть получен твердый раствор, пересыщенный вакансиями, медью и другими легирующими добавками. Во время старения при температурах от комнатной до температуры, соответствующей линии предельного растворения (см. рис. 85), пересыщенной твердый раствор распадается. В определенных условиях это может приводить к значительному упрочнению сплава. Распределение медн в сплаве оказывает также определяющее влияние на сопротивление межкристаллитной коррозии и КР- Термодинамически устойчивый конечный продукт распада пересыщенного твердого раствора А1 — Си представляет собой двухфазную структуру, состоящую из насыщенного твердого раствора а (г. ц. к.) и равновесной фазы 9, имеющей тетрагональную кристаллическую решетку и близкой по составу соединению СиАЬ. Из-за различия кристаллических решеток равновесная фаза 0 некогерентна с твердым раствором г. ц. к. Высокая межфазная энергия поверхности раздела фаз (>1000 эрг/см ) [119] приводит к высокой энергии активации для зарождения фазы 0. Поэтому образованию равновесной фазы может предшествовать ряд превращений метаста-бильных фаз, энергия активации которых при зарождении ниже. Последовательность образования выделений достаточно полно была изучена и может быть представлена в виде следующего ряда [97, 119, 120]  [c.235]

ВОЛНЫ [капиллярные — поверхностные волны малой длины, в которых основную роль играют силы поверхностного натяжения когерентные — волны света, у которых разность их фаз не зависит от времени ленгмюровскне — продольные колебания плотности электронов в плазме Маха — ударные звуковые волны, возникающие при движении тел со скоростями, превышающими фазивые скорости упругих волн в данной среде некогерентные — волны света, разность фаз которых изменяется с течением времени поверхностные <— волны, распространяющиеся на свободной поверхности жидкости или на поверхности раздела несмешивающихся жидкостей акустические — упругие волны, распространяющиеся вдоль поверхности твердого тела и затухающие при удалении от нее электромагнитные — электромагнитные волны, распространяющиеся вдоль некоторой поверхности и затухающие при удалении от нее) поперечные — волны, когда частицы среды колеблются в плоскостях, перпендикулярных к направлению распространения волны (эта среда должна обладать упругостью формы) продольные — волны, если колебания частиц среды происходят в направлении распространения  [c.227]

Т, о., все расположенные вблизи пути частицы атомы будут излучать когерентно. Это и происходит в случае излучения Черенкова — Вавилона. Во всех др. направлениях, для к-рых OS У)-= г= с/и)У е, возбуждённые атомы излучают некогерентно. То же самое происходит при скорости частицы и<с/Ув. В однородном веществе И. разных излучателей полностью погашается. Если в веществе присутствуют микроскопич. неоднородности, то полного погашения волн от разных излучателей в точка наблюдения не происходит. Наличие поверхности раздела двух сред препятствует взаимному погашению полей в точке наблюдения от излучателей, находящихся по разным сторонам поверхности раздела и увеличивает интенснвность некогерентного высвечивания возбуждённых атомов, т. е. переходного И.  [c.104]

При соблюдении структурного соответствия зародыш новой фазы когерентно связан с матрицей. Поверхность раздела двух кристаллов считается когерентной, если кристаллы соприкасаются общими плоскостями (сопряжение межнлоскостного расстояния одного кристалла с геометрически подобной, но кристаллографически отличной структурой другого кристалла) и взаимно связаны ориентировками (решетка одной фазы постепенно переходит в решетку другой). Чем лучше геометрически согласуются кристаллы и чем меньше различие электронных конфигураций их атомов, тем меньше энергия поверхности раздела. Такое сопряжение возможно при некотором упругом искажении решеток (например, сжатии одной и растяжении другой) вблизи границы раздела. Таким 0браз0)М, общим условием когерентности является образование метастабильной решетки у зародыша или деформация его равновесной решетки. В обоих случаях свободная энергия новой фазы возрастает по сравнению с равновесной. Следует отметить, что полная когерентность в реальных сплавах наблюдается редко. Однако даже при некогерентном выделении в связи со стремлением системы уменьшить поверхностную энергию может наблюдаться ориентационное соответствие решеток двух фаз. Так, например, в системе медь — цинк при выделении из р-латуни частиц а-фазы наблюдается соотношение (110)р II (111)а и [111]р II [110]а. С упругой энергией деформации связана также форма выделяющейся частицы.  [c.178]


Среди различных факторов, определяющих величину работы продвижения дислокаций через препятствия, наибольшее значение, ло-видимому, имеют когерентные напряжения, возникающие из-за различия атомных объемов матрицы и когерентного выделения (теория Мотта и Набарро), и эффекты, связанные с увеличением поверхности раздела между частицей и матрицей при рассечении частицы дислокацией (Спайх). По мере роста частиц работа пересечения (среза) их увеличивается и дислокации начинают проходить между ними (если расстояние между частицами достаточно велико, а материал матрицы между жесткими некогерентными частицами является достаточно мягким). Если  [c.310]

Важно знать, при каком количестве частиц второй фазы прочность сплава будет наиболее высокой. С увеличением числа частиц возрастает сопротивление пластической деформации, но при этом уменьшается способность материала деформироваться, возрастает вероятность образования трещины и уменьшается сопротивление разрушению. Некогерентные частицы с большой поверхностной энергией могут приводить к образоваиию трещин на поверхностях раздела вследствие локальной концентрации напряжения после образования петель. Вместе с тем частицы могут служить стопорами для развития трещин.  [c.315]

Высокое сопротивление ползучести следует ол идать при наличии когерентной связи между матрицей и второй фазой. В этом случае, с одной стороны, нужны большие усилия, чтобы протащить дислокацию через поверхность раздела, а с другой — такая граница в диффузионном отношении менее проницаема, чем некогерентная. При когерентной связи частицы растут медленно.  [c.393]

Границы, образующиеся в твердом теле, можно разделить на три основных класса когерентные, полукогерентные и некогерентные. Считается, что два кристалла полностью когерентны, если они соприкасаются по плоской поверхности раздела (не обязательно рациональной), которая является общей для решеток обоих кристаллов. Ряды и плоскости обеих решеток не прерываются на поверхности раздела, а лишь изменяют направление при переходе от одного кристалла к другому. Примером границ этого типа являются когерентные двойниковые границы. Однако в общем случае, когда имеются две различные фазы с произвольными параметрами решеток (зависящими от характера межатомных взаимодействий), плоскости, по которым могло бы происходить точное сопряжение обеих решеток, обычно отсутствуют, так что полностью когерентные межфазные границы между кристаллами значительных размеров явление редкое. Но если площадь поверхности раздела достаточно мала и если неточность сопряжения решеток соприкасающихся кристаллов невелика, когерент-  [c.232]

Если переходная область между двумя кристаллами имеет малую толщину и очень разунорядочена, такая граница аналогична большеугловой границе зерна и является некогерентной. В этом случае непрерывность рядов и плоскостей решетки на поверхности раздела нарушается. Когда растущие кристаллы достигают такого размера, что могут быть видимы в оптический микроскоп, границы в большинстве процессов зарождения и роста являются некогерентными.  [c.233]

В дальнейшем мы будем предполагать, что, какова бы ни была структура поверхности раздела, кристаллы по обе стороны от поверхности раздела остаются внутренне когерентными и контакт между ними нигде не нарушается. Сделанное нами предположение ) означает, что поверхность раздела является инвариантной, так что все макроскопические векторы, которые могут содержаться в любом плоском сечении этой поверхности, при ее перемещении не изменяются по длине и направлению. Это условие удовлетворяется автоматически в случае полностью когерентной границы и может выполняться при определенных обстоятельствах за счет соответствующих перемещений атомов в случае некогерентной границы. Структура нолукогерентной границы должна быть такой, чтобы это условие удовлетворялось. Наложенное ограничение можно рассматривать как частный случай более общей проблемы совместимости макроскопического изменения формы дефор-  [c.233]

Существует два механизма, с пЬмощью которых некогерентная граница кристалла может перемещаться в направлении, перпендикулярном самой себе. В первом из них атомы способны пересекать поверхность раздела и присоединяться к растущему кристаллу  [c.255]

Возвратимся теперь к уравнению (15) и рассмотрим, чем определяется величина В общем случае она может быть равна свободной энергии активации миграции атомов в а-фазе и вряд ли будет ее превышать, так как граница раздела разупорядочена по сравнению со структурой а-фазы. Если граница некогерентна, S.gyn может быть равна энергии активации миграции атомов по границам зерен, а не диффузии по решетке и будет, таким образом, значительно меньше энергии активации роста на стадии зарождения, так как в последнем случае поверхность раздела часто бывает полукогерентной.  [c.258]

В случае образования кристалла новой фазы внутри матрицы связанная с образованием кристалла упругая энергия значительно выше для когерентного превращения с большим изменением формы, чем для некогерентного преврап] ения, когда долй ны быть аккомодированы только дилатационные изменения. Это следует из того, что в первом приближении упругая энергия, обусловленная сдвиговыми компонентами изменения формы [уравнение (66)], может быть отделена от вклада несдвиговых компонентов. На стадии зарождения когерентное превращение с изменением формы может быть энергетически более выгодным, так как более высокая упругая энергия может компенсироваться более низкой энергией поверхности зародыша. Однако это не относится к достаточно большим кристаллам, видимым в световой микроскоп. Таким образом, обнаружение изменения формы обычно можно считать указанием на действие определенного механизма роста и на то, что конкурирующий механизм, который мог бы привести к тому же фазовому превращению без изменения формы, действует слишком медленно, чтобы его можно было обнаружить экспериментально. Это объясняет, почему обнаружение изменения формы является наиболее надежным критерием мартенситного характера данного превращения, так как рост мартенсита оказывается невозможным, если когерентность фаз на дв жущейся поверхности раздела не сохраняется.  [c.338]


При зарождении некагерентного выделения стабильной фазы с высокой поверхностной энергией в формуле (25) определяющую роль играет составляющая А пов, а не А упр. При образовании некогерентного выделения на межзеренной границе, являющейся готовой поверхностью раздела, составляющая Д/ пов, затрудняющая зарождение, оказывается уменьшенной, т. е. зарождение некогерентного выделения на. высокоугловой границе облегчено.  [c.304]

Выделение карбида хрома начинается после повторного нагрева в течение 100 ч при 600° С. В оптическом микроскопе выделившийся карбид обнаруживается в виде частиц по границам аустенитных зерен (ф. 437/4, 5 438/3 440/6). Иногда выделения видны на границах двойников, преимущественно по некогерентным поверхностям раздела (ф. 437/6). Карбид МйгзСв в большинстве случаев образуется в виде прямоугольных или треугольных частиц ф. 437/7 и 440/8).  [c.45]

Когда энергия, необходимая для создания поверхности раздела фаз, относительно велика, процесс образования зародыша в основном определяется вторым членом А/ з уравнения общей свободной энергии фазовых превращений. Особенно это имеет место при небольших степенях переохлаждения (первый член / .РV мал). В этих условиях образование зародыша рвязано с необходимостью значительного искажения атомнокристаллической структуры на возникающей межфазной границе. Такие зародыши называются зародышами некогерентного типа. Они образуются преимущественно по границам зерен с большими углами разориенти-ровки, которые особенно характерны для металлов в рекристаллизован-ном состоянии, а также на свободных поверхностях и инородных включениях. Эти места являются наиболее выгодными потому, что обладают более высокими уровнем свободной поверхностной энергии и степенью искажений кристаллической решетки исходной фазы. Уменьшение размера зерен способствует увеличению числа возникающих зародышей и тем самым ускоряет превращение в целом. А. X. Коттрелл 16] отмечает, что по степени искажения (или неупорядоченности) атомной структуры эти границы и поверхность раздела между некогерентным зародышем и матрицей исходной фазы весьма напоминают друг друга. Возникновение некогерентных зародышей по границам зерен в сплавах облегчается еще и потому, что благодаря повышенной концентрации поверх-ностноактивиых легирующих элементов и примесей и более высоким коэффициентам диффузии атомов на границах (в сравнении с областями неискаженной решетки в зерне) повышается вероятность флуктуаций состава и сокращается время, необходимое для подхода атомов нужного сорта к зародышу. Экспериментально это доказано методом меченых  [c.15]

По мере увеличения степени переохлаждения (в область достаточно низких температур) время, требуемое для перемещения атомов к возможным местам образования некогерентных зародышей, становится настолько большим, что не только рост, но и возникновение таких зародышей становится невозможным. Однако благодаря значительной отрицательной величине АРу в этих условиях в металлах получают развитие другие процессы, при которых удается избежать значительных затрат энергии на создание поверхностей раздела при образовании зародышей. Эти затраты резко снижаются, если оказывается возможным установление когерентного или полукогерентного соответствия кристаллических решеток зародыша новой фазы и матрицы исходной фазы на границе раздела. Возникающие зародыши новой фазы ориентируются относительно кристаллической решетки исходной фазы так, что в сопряжении оказываются кристаллографические плоскости фаз, строение и размеры которых наиболее близки друг к другу. При когерентном образовании и росте зародыша взаимная ориентировка кристаллических решеток фаз характеризуется наличием определенных взаимнопараллельных плоскостей и направлений. Например, при превращении y-Fea-Fe плоскость (И1) решетки уРе паралле.чьна плоскости (110) решетки a-Fe, а направление [110] решетки yFe параллельно направлению [111] решетки a-Fe. При превращении P-Ti -> a-Ti параллельными плоскостями являются (110) решетки P-Ti и (0001) решетки a-Ti, а направлениями — [111] решетки p-Ti и [1120] решетки a-Ti.  [c.16]

Водород способен накапливаться и на границах между матрицей и выделениями, особенно если последние некогерентны. Наличие водорода может уменьшать прочность этой границы раздела, облегчая тем самым зарождение растрескивания. Если же количество водорода достаточно велико, то он может способствовать росту полостей на границе раздела за счет повышения давления Нг. Последний случай возможен при дислокационном переносе водорода, если он быстрее доставляется к границам выделений, чем уходит от них путем диффузии. С такой точки зрения интерпретировались случаи вязкого разрушения, ускоренного присутствием водорода [72, 74, 124]. При этом не уточнялось, влияет ли водород на зарождение или на рост полостей. Однако наблюдающееся во многих случаях уменьшение размеров лунок на поверхностях разрушения в водороде [74, 84, 124] позволяет предположить, что присутствие водорода отражается главным образом на зарождении полостей. Пример таких результатов показан на рис. 54. Эффекты, связанные с накоплением водорода на частицах предполагались и в ряде других случаев [63, 334, 335J. Поэтому важно было бы продолжить исследования влияния типа и ориентации включений в ферритных сталях [26, 59]. Число работ по этой теме возрастает, поскольку в материалах, применяемых на практике, желательно добиться вязкого типа разрушения.  [c.137]


Смотреть страницы где упоминается термин Поверхность раздела некогерентная : [c.382]    [c.24]    [c.24]    [c.475]    [c.85]    [c.307]    [c.24]    [c.231]    [c.19]   
Физическое металловедение Вып II (1968) -- [ c.232 , c.233 ]



ПОИСК



Некогерентность

Поверхность раздела



© 2025 Mash-xxl.info Реклама на сайте