Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мышьяк

В химии под металлами понимают определенную группу элементов, расположенную в левой части Периодической таблицы Д. И. Менделеева (табл. 1). Элементы этой группы, вступая в химическую реакцию с элементами, являющимися неметаллами, отдают им свои внешние, так называемые валентные электроны. Это является следствием того, что у металлов внешние электроны непрочно связаны с ядром кроме того, на наружных электронных оболочках электронов немного (всего 1—2), тогда как у неметаллов электронов много (5—8). Все элементы, расположенные левее галлия, индия и таллия — металлы, а правее мышьяка, сурьмы и висмута — неметаллы.. Элементы, расположенные в группах П1В, IVB и VB, могут относиться и к металлам (In, Т1, Sn, РЬ, Sb, Bi), и к неметаллам (С, N, Р, As, О, S) и занимать промежуточное положение (Ga, Si, Ge, Se, Те).  [c.11]


Так, уральские руды содержат небольшое количество меди, и она попадает в сталь, выплавленную из этих руд. Сталь, выплавленная из керченских руд, имеет мышьяк, так как эти руды содержат мышьяк. Переплавка луженого, оцинкованного и другого скрапа приводит к тому, что в металл попадают олово, цинк, сурьма, свинец и т. д.  [c.341]

Примесями (загрязнениями) в этих сплавах являются железо, кремний, свинец, сера, углерод, фосфор, мышьяк, предельное содержание которых строго ограничивается ГОСТом.  [c.555]

Примеси (мышьяк, сурьма, висмут и др.) осаждаются на дно ванны, их удаляют и перерабатывают для извлечения этих металлов. Катоды выгружают, промывают и переплавляют в электропечах.  [c.49]

В качестве примера смешанной формы связей (металлической и ковалентной) можно указать на графит атом углерода в решетке графита связан с тремя соседними ковалентной связью, а четвертый электрон каждого атома является общим для всего атомного слоя, обусловливая электропроводность графита. Смешанные связи встречаются также в мышьяке, висмуте, селене и других простых веществах. Чисто металлическая связь характерна только для некоторых металлических монокристаллов.  [c.11]

Как коррозионностойкий материал применяется свинец чистоты не меиее 99,2%- Примеси в свинце (Си, 5п, Аз, Ре, В1 и др.) увеличивают прочностные показатели свинца, но уменьшают его пластичность. Примеси мышьяка придают свинцу хрупкость. Имеются указания, что примеси серебра, никеля и меди повышают коррозионную стойкость свинца, если они распределены в сплаве равномерно. Однако в процессе коррозии па поверхности свинца скапливаются эти благородные примеси, образующие микрокатоды, что может привести к повышению скорости коррозии свинца.  [c.261]

Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]


В СССР предельно допустимые концентрации свинца в продуктах питания в основном находятся в пределах 0,1—0,5 мг/кг (в детском питании — не выше 0,3 мг/кг). Только для рыбы, а также мясных и овощных консервов в сборной жестяной таре ПДК составляет 1 мг/кг, а для моллюсков и ракообразных — 10 мг/кг. См. Предельно допустимые концентрации тяжелых металлов и мышьяка в продовольственном сырье и пищевых продуктах Санитарные правила и нормы 42-123-4089—86, утв. 31.03.1986 т. —Примеч. ред.  [c.19]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]

В некоторых сталях в небольших количествах присутствует мышьяк. При содержании менее 0,1 % он увеличивает скорость коррозии в кислотах (хотя и в меньшей степени, чем сера и фосфор), при содержании более 0,2 % —снижает [35]. Марганец, присутствующий в обычных количествах, эффективно снижает кислотную коррозию стали, содержащей небольшие примеси серы.  [c.125]

Серусодержащие соединения, являясь эффективными ингибиторами, иногда вызывают водородную хрупкость стали. Это является следствием того, что сами эти вещества или образующиеся продукты их гидролиза (например, HaS) могут способствовать внедрению в металл атомов водорода (см. разд. 4.5). Такое же действие могут оказывать соединения, содержащие мышьяк и фосфор.  [c.271]

Обесцинкованию способствуют 1) высокая температура, 2) неподвижность растворов, особенно в случае кислых сред, 3) образование пористых неорганических осадков. Латуни, содержащие 15 % Zn и менее, обычно не подвергаются обесцинкованию. Выше также отмечалось, что обесцинкование так называемых а-латуней (до 40 % Zfi) можно уменьшить, введя в сплав олово и несколько сотых процента мышьяка, сурьмы или фосфора.  [c.332]

Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31].  [c.338]


Донорные и акцепторные примеси. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные. Если, например, в кристалле кремния имеется примесь атомов мышьяка, то эти атомы замещают в узлах кристаллической решетки атомы кремния. Пятивалентный атом мышьяка вступает в ковалентные связи с четырьмя атомами кремния, а его пятый электрон оказывается незанятым в связях (рис. 155).  [c.155]

Энергия, необходимая для разрыва связи пятого валентного электрона с атомом мышьяка в кристалле кремния, мала. Поэтому при комнатной температуре почти все атомы мышьяка  [c.155]

Положительный ион мышьяка не может захватить электрон у одного из соседних атомов кремния, так как энергия связи электронов с атомами кремния значительно превышает энергию связи пятого валентного электрона с атомом мышьяка. Поэтому эстафетного перемещения электронной вакансии не происходит, дырочной проводимости нет. Примеси, поставляющие электроны проводимости без возникновения такого же числа дырок, называются донорными.  [c.155]

Найдем, в качестве примера, положение локальных разрешенных уровней примесных атомов V группы таблицы Менделеева в элементарных полупроводниках IV группы. Предположим, например, что в одном из узлов кристалла германия находится атом мышьяка, имеющий пять электронов в валентной оболочке. Четыре валентных электрона участвуют в образовании ковалентных связей с четырьмя соседними атомами германия.- Поскольку ковалентная связь является насыщенной, пятый электрон новой связи образовать не может. Находясь в кристалле, он сравнительно слабо взаимодействует с большим числом окружающих мышьяк атомов германия. Вследствие этого его связь с атомом As уменьшается и он движется по орбите большого радиуса. Его поведение подобно поведению электрона в атоме водорода. Таким образом, задача сводится к отысканию уровней энергии водородоподобного атома. При ее решении необходимо учесть следующие обстоятельства. Поскольку электрон движется не только в кулоновском поле иона мышьяка, но и в периодическом поле решетки, ему необходимо приписать эффективную массу т. Кроме того, взаимодействие электрона с атомным остатком As+, имеющим заряд Ze, происходит в твердом теле, обладающем диэлектрической проницаемостью г. С учетом этого потенциальная энергия электрона примесного атома  [c.237]

Учитывая все сказанное, напишем уравнение Шредингера для пятого электрона мышьяка  [c.237]

В настоящее время для легирования аморфного кремния (и германия) кроме фосфора и бора используют также примеси мышьяка. сурьмы, индия, алюминия и т. д. При этом прямым методом было установлено, что координационное число атома мышьяка в аморфном кремнии, так же как и в кристаллическом, равно четырем. Кроме того, для получения слоев -типа в аморфный кремний с низкой плотностью состояний вводят атомы щелочных элементов, которые проявляют донорные свойства, находясь в междоузлиях.  [c.366]

При плавке жаропрочный сплав контактирует с футеровочным материалом тигеля электропечи, а при заливке он взаимодействует с материалом формы. Например, при плавке литейного сплава такие элементы, как кобальт, мышьяк и медь, переходят полностью (100%) в металл, не взаимодействуя с футеровкой, а элементы, расположенные в левой части Са, Mg, Л1 и др., активно взаимодействуют с кислородом и образуют оксиды, которые отрицательно влияют на стойкость футеровки и оболочковой формы.  [c.204]

Влияние вредных примесей. К вредным примесям относятся сера и фосфор, а также легкоплавкие цветные металлы - свинец, висмут, олово, цинк, мышьяк и др. Источниками поступления их в сплав являются шихтовые материалы, окислители, восстановители и флюсы. При наличии в сплавах 0,03 - 0,1% S образуются сульфиды металлов FeS, MgS, MnS, MoS и др. При кристаллизации хрупкие сульфидные эвтектики сосредоточиваются по границам зерен основного металла и вызывают при 985 - 1190°С красноломкость сплава (температуры плавления сульфидов приведены на ). В жаропрочных сплавах, предназначенных для отливок ГТД, содержание серы допускается в пределах 0,01-0,02%.  [c.269]

Стали, кроме обычных примесей, могут содержать различные случайные. Например, в скрап (лом) попадают куски легированных хромоникелевых сталей. Поэтому выплавленная скрап-процессом сталь обычно содержит в некотором количестве элементы, которыми обычно легируют сталь (хром, h)i-KejH, и др.). Некоторые руды содержат трудноудаляемые примеси. Например, руды Керченского месторождения содержат мышьяк, и выплавленная па этих рудах сталь будет содержать этот элемент до 0,1—0,15%. Наоборот, некоторые руды прв1(тически не имеют загрязнений другими элементами, и метал.) , полученный из этих руд (Магнитогорский и Кузнецкий комбинаты), очень чистый.  [c.193]

Электромобили применяются постоянно в ограниченных масштабах на внутригородских мелкопорционных перевозках грузов. Это может быть оправдано по соображениям экологии и экономии, так как стоимость заправки бензином превосходит стоимость зарядки электроэнергией транспортного средства при одинаковом пробеге в 2. .. 5 раз. Сдерживает применение электромобилей отсутствие энергоемких и дешевых аккумуляторных батарей. Кроме того, при проектировании электромобилей берутся за основу или неоправданно копируются обычные автомобили универсального назначения с завышенными относительно к условиям городской эксплуатации показателями прочности, проходимости, а значит металлоемкости и стоимости. В целом электромобили нетоксичны, но при зарядке кислотных свинцовых аккумуляторных батарей выделяется газ, в состав которого входят соединения мышьяка. Их концентрация мала, но токсичность высока. При расширении масштабов применения электромобилей это может стать не менее важной самостоятельной проблемой.  [c.61]

Перенапряжение водорода при выделении его на технических металлах из 2-н. раствора H2SO4 приведено на рис. 175. Присутствие в растворе и адсорбция на катодной поверхности некоторых веществ (солей мышьяка и висмута, некоторых органических веществ) увеличивают перенапряжение водорода. С повышением температуры перенапряжение водорода уменьшается (примерно на 2—4 мВ на 1 град для металлов с большим перенапряжением водорода).  [c.252]


Катодные ингибиторы электрохимической коррозии металлов — вещества, повышающие перенапряжение катодного процесса при их адсорбции на катодных участках поверхности корродирующего металла соли или окислы мышьяка и висмута [например, As lg, AS2O3, 612(804)3], желатин (рис. 247), агар-агар, декстрин, ЧМ и многие другие органические вещества замедляют коррозию в растворах неокисляющих кислот, повышая перенапряжение водорода. Катодные ингибиторы безопасны, так как при недостаточной концентрации в растворе они не вызывают усиления коррозии.  [c.347]

В начале в раствор переходят одновременно цинк и медь в пропорции, соответствующей составу сплава. Ионы меди затем вторично выделяются из раствора, а образовавшийся осадок меди ускоряет электрохимическую коррозию латуни, как добавочный катод. В результате в раствор переходят ионы цинка, и с течением времени обесцинкование распространяется так глубоко, что приводит к образованию сквозных поврежде1шй латуни. Для уменьшения обесцннкования латуней сплав дополнительно легируют небольшими количествами олова, никеля, алюминия, а чаще всего мышьяка, порядка 0,001—0,012%. Возможный механизм влияния мышьяка — увеличение перенапряжения вторичного выделения меди.  [c.253]

В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались меж-кристаллнтнпй коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия.  [c.278]

А8С1з, 812(804)3), катионы которых восстанавливаются на микрокатодах и повышают перенапряжение водорода. Эффект действия небольшой добавки мышьяковистого ангидрида (0,045% в пересчете на мышьяк) на скорость коррозии углеродистой стали в серной кислоте представлен па рис. 211. Эти замедлители неэффективны в процессах коррозии металлов с кислородной деполяризацией.  [c.314]

Антифрикционные и механические свойства баббитов повышаются при введении в их состав никеля, кадмия и мышьяка. Никель упрочняет а-раствор. Кадмий с мышьяком (сплав БН) образуют соединения As d, которые служат зародышами для формирования соединения SnSb (р-фазы).  [c.357]

Сходным образом небольшие количества оксида мышьяка ускоряют коррозию стали в кислотах (например, в HjSO ), возможно, благодаря формированию арсенидов. А будучи добавленным в больших количествах (jw 0,05 % в 72 % HjSOJ, оксид мышьяка становится эффективным ингибитором коррозии, вероятно, вследствие того, что элементарный мышьяк, имеющий высокое водородное перенапряжение, осаждается на катодных участках. Соли олова имеют аналогичный ингибирующий эффект и используются для защиты стали от разрушения травильными кислотами при удалении окалины. — Примеч. авт.  [c.58]

Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию.  [c.319]

Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25 °С D = 1,3-10" см с) 117], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцин-кованных слоев е-латуни (сплав Zn—Си с 86 ат. % Zn) и -у-латуни (сплав Zn—Си с 65 ат. % Zn) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным.  [c.334]

Сталлов. Так, хрупкие вещества, например кварц, сурьма, мышьяк, корунд, имеющие направленные связи в пространстве, и некоторые металлы при достаточно низких температурах разрываются после малой пластической деформации или без нее на две части вдоль атомной плоскости — плоскости скола, т. е. претерпевают так называемый хрупкий разрыв. Некоторые кристаллы, в особенности большинство чистых Рис. 4.11. Зависимость металлов, очень пластичны и их можно потенциальной энергии значительно деформировать без разруше- заР дТстГующ мГ ия. атомами  [c.129]


Смотреть страницы где упоминается термин Мышьяк : [c.205]    [c.163]    [c.13]    [c.15]    [c.622]    [c.23]    [c.40]    [c.53]    [c.200]    [c.13]    [c.633]    [c.149]    [c.332]    [c.34]    [c.58]    [c.184]    [c.367]    [c.929]   
Физика низких температур (1956) -- [ c.161 ]

Электротехнические материалы (1985) -- [ c.230 , c.234 , c.252 , c.253 , c.255 , c.261 , c.263 ]

Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.379 ]

Материалы ядерных энергетических установок (1979) -- [ c.52 ]

Ингибиторы коррозии металлов (1968) -- [ c.0 ]

Физико-химическая кристаллография (1972) -- [ c.41 ]

Химия и радиоматериалы (1970) -- [ c.237 , c.245 ]

Температура и её измерение (1960) -- [ c.133 ]

Электротехнические материалы Издание 5 (1969) -- [ c.323 ]

Справочник по специальным работам (1962) -- [ c.164 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.205 , c.210 , c.647 ]

Технический справочник железнодорожника Том 1 (1951) -- [ c.283 ]

Компьютерное материаловедение полимеров Т.1 (1999) -- [ c.31 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.356 ]



ПОИСК



6-лактон продукт реакции с окисью мышьяка (XII)

Агрессивные среды неорганические мышьяк хлористый (хлорид

Ацетилен, СаНа. Тяжелый ацетилен, aHD и aDa. Циан, aN2. Аммиак, NH3 и ND3. Тригалоиды фосфора, мышьяка, сурьмы и висмута. Трехфтористый бор, BF3. Фосфор, Р4. Формальдегид, Н2СО и DsO. Перекись водорода

Бронза Определение мышьяка колориметрическо

Бронза Определение мышьяка объёмное

Взаимодействие хрома с мышьяком, цинком, свинцом, оловом, висмутом и кадмием

Группа VA. Полуметаллы мышьяк, сурьма, висмут

Диаграмма состояний алюминий азот железо—мышьяк

Диаграмма состояний железо—титан железо—углерод—мышьяк

Другие соли фосфора, мышьяка, ванадия и пр

Железо — мышьяк

Железо — углерод — мышьяк

Ингибиторы, состав и свойства мышьяка соединени

Иридий — мышьяк

Мамаев, К. Т. Протасов. Количественное определение селена и мышьяка на двухканальном коротковолновом рентгеновском спектрометре

Медь-мышьяк, система - Диаграмма состояния

Милаев, Т. В. Ляшенко. Колориметрическое определение мышьяка в металлическом висмуте высокой чистоты

Мышьяк Давление паров

Мышьяк Кристаллическая структура

Мышьяк Механические свойства

Мышьяк Определение в бронзе

Мышьяк Растворимость в химических среда

Мышьяк Свойства

Мышьяк Твердость

Мышьяк Теплота образования

Мышьяк Физико-химические свойства

Мышьяк Электросопротивление

Мышьяк белый 946, XII 14, XIV

Мышьяк и сплавы

Мышьяк окись

Мышьяк окись (III), продукт реакции с глюконовой к-той

Мышьяк пятисернистый 22, XIV

Мышьяк соединения

Мышьяк хлористый

Мышьяк хлористый (трех)

Мышьяк — Растворимость в химических средах 70 — Свойства

Мышьяк, физич. свойства

Мышьяка трихлорид

Определение мышьяка

Определение мышьяка в водах системы гидрозолоудаления. Я. И. Бельская (УралВТИ)

Осаждение мышьяка

Очистка сточных вод от мышьяка

Подгруппа VA фосфор, мышьяк, сурьма и висмут

Рафинирование мышьяка, сурьмы, олова

Система железо — мышьяк

Сталь, ликвация марганца мышьяка

Сульфиды мышьяка 21, XIV

Удаление из воды цинка, меди, мышьяка и нитратов

Цементация ртути, сурьмы, мышьяка, свинца, висмута и олова

Юделевич, Ф. И. Вершинина, Т. И. Сосновская. Спектрографическое определение мышьяка, сурьмы и олова в сырье и полупродуктах свинцового производства



© 2025 Mash-xxl.info Реклама на сайте