Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Парное распределение

Современные методы моделирования основываются на том, что составленная тем или иным способом аморфная глобула с СПУ-структурой подвергается процедуре статической релаксации, при которой с помощью подходящего парного потенциала последовательно вычисляются коллективные локальные смещения атомов по принципу энергетической минимизации (модель мягких сфер). Релаксационные модели обеспечивают повышенное значение коэффициента упаковки атомов и прекрасное соответствие характера синтезированной функции парного распределения экспериментально определенной. Следует особо отметить, что процедура статической релаксации существенно меняет локальную структуру  [c.14]


Теперь мы видим, что член первого порядка в (8.3.1) через соотношения (7.5.18) и (7.5.19) связан с парным распределением и прямой корреляционной функцией, а функциональные производные более высокого порядка связаны с распределениями более высокого порядка. Если мы хотим получить замкнутое уравнение, содержащее только щ (г) я С (г), то должны допустить, что разложение может быть оборвано после первого члена. Невозможно привести никаких других аргументов для обоснования этой процедуры. Однако следует отметить, что функциональная формулировка чрезвычайно гибка, поэтому в нашем распоряжении имеется огромное число возможностей благодаря свободе выбора функционалов А л В, также функции г] . Выбор их требует большого искусства. Рассмотрим два примера такого выбора, которые оказались особенно успешными.  [c.289]

Следовательно, Пг (q ijj) имеет вид отношения парного распределения к одночастичному распределению в системе iV -Ь 1 частиц. В термодинамическом пределе получаем просто  [c.290]

Исходя из найденного решения, мы можем определить функцию F (z) с помощью (8.4.13) и, подставляя ее в (8.4.26), получить явное выражение для G (z) — преобразования Лапласа функции парного распределения. Мы не будем приводить здесь довольно громоздких формул достаточно подчеркнуть, что проблема полностью решена.  [c.299]

Это уравнение является более общим, чем (9.3.1). Чтобы получить уравнение Ван-дер-Ваальса, мы должны допустить, что парное распределение для твердых сфер практически не зависит от плотности. В зтом случае третий член в правой части равен нулю, а во втором члене мы можем ввести не зависящую от плотности полог жительную константу  [c.332]

Парамагнитные системы I 324 Парная корреляционная функция I 257, 285 Парное распределение I 256  [c.393]

При описании процессов коалесценции газовых пузырьков будем предполагать следующее. Вероятность тройных соударений пузырьков настолько мала, что можно ограничиться приближением парных столкновений изменение во времени функции распределения пузырьков газа по размерам происходит довольно медленно, так что временем собственно коалесценции отдельных пар пузырьков газа можно пренебречь. При описании процессов дробления также будем считать, что дробление отдельных пузырьков газа происходит намного быстрее, чем изменение функции распределения пузырьков по размерам. При этом поведение пузырьков между актами дробления и коалесценции можно считать статистически независимым.  [c.179]

Касательные напряжения т предполагаются равномерно распределенными по ширине сечения 8. В поперечном сечении стержня возникают напряжения, парные т. Они направлены по касательной к линии контура (рис. 382). Если направление поперечной силы Q не совпадает с главной осью сечения, получим, очевидно,  [c.334]


Если осветить одномерную (двумерную) решетку монохроматическим светом, то получится одномерная (двумерная) картина распределения по дифракционным порядкам, которая описывается простыми уравнениями с одним (линейная решетка) или парным индексом (правильная структура на плоскости). Трех-  [c.349]

В заключение этого параграфа обсудим результаты, полученные для парной функции распределения системы частиц с потенциалом взаимодействия Леннард—Джонса. На рис. 25 приведена зависимость р(т ), где г =г/о, для 0 =0/е=2,89 и значения плотности р =ра =0,85 (кривая /) и для 0 =2,б4, р = Л,55 (кривая 2). Из рисунка видно, что кривые принципиально не отличаются от аналогичных кривых, полученных для системы частиц с потенциалом взаимодействия твердых сфер. При увеличении плотности высота пиков возрастает, а также увеличивается крутизна первого подъема, максимум смещается влево, т. е. структура становится более выраженной. На рис. 26 приведена зависимость р,(/ ) при одной плотности р =0,85 и различных  [c.209]

Н. Н. Боголюбов систематически ввел в статистическую физику функциональные методы [11], которые затем широко использовались различными авторами. Еще раньше функциональные методы в статистической физике применял Ивон для вычисления парной функции распределения [25].  [c.213]

Таким образом, для построения термодинамики систем с парным потенциалом взаимодействия между частицами по методу Боголюбова необходимо определить бинарную функцию распределения как решение цепочки уравнений (12.67).  [c.215]

Касательные напряжения г предполагаются равномерно распределенными по ширине сечения 6. В поперечном сечении стержня возникают напряжения, парные г. Они направлены по касательной к линии контура (рис. 4.34). Если направление  [c.188]

Касательное напряжение в вертикальной стенке двутавровой балки убывает по мере приближения к горизонтальной полке (рис. 5.12, б). В самой полке плоскость, в которой действуют парные касательные напряжения, должна совпадать с плоскостью полки. Это становится особенно ясным, если вообразить, что толщина йз стремится к нулю. На рис. 5.12, а стрелками показано распределение векторов т по сечению. Соответствующие эпюры, изображающие зависимость величины напряжения от положения волокна, показаны на рис. 5.12, б.  [c.131]

Для расчета теплоотдачи при ламинарном пограничном слое используем уравнение (7-3). Чтобы рассчитать теплоотдачу, необходимо знать распределение скорости в слое. Распределение скорости в лами-. парном пограничном слое по форме близко к параболе. Кривую распределения скорости удобно описать уравнением кубической параболы  [c.182]

Рис. 4.11. Распределение (а) сигналов RE и RE отраженных электронов, зарегистрированных парными солнечными батареями в РЭМ (б) реконструированный на их основе профиль усталостных бороздок в соответствии с циклом нагружения с учетом эффекта пластического притупления вершины трещины Рис. 4.11. Распределение (а) сигналов RE и RE <a href="/info/285723">отраженных электронов</a>, зарегистрированных парными <a href="/info/35591">солнечными батареями</a> в РЭМ (б) реконструированный на их основе профиль усталостных бороздок в соответствии с циклом нагружения с учетом эффекта пластического притупления вершины трещины
Рассортировка охватывающих и охватываемых деталей на размерные группы связана с существенным недостатком, заключающимся в том, что значительное количество этих деталей, нередко до 30—40%, остается без применения, так как сопряжение их друг с другом не отвечает установленным требованиям точности. Чтобы добиться большей собираемости, существуют различные способы один из них состоит в том, что при рассортировке пределы допуска для групп деталей, частоты которых больше, сужают, а для парных, наоборот, расширяют. При этом площади, ограниченные соответствующими кривыми распределения, должны быть примерно одинаковы. Кроме того, увеличивают число групп сортировки. Объем незавершенного производства в этих случаях можно уменьшить примерно в 2 раза.  [c.49]

В приспособлении для одновременной установки четырех гильз в блок цилиндров (рис. 205) равномерность распределения силы запрессовки достигается наличием двух парных коромысел 1 и подвешенных к ним башмаков 2 со сферическими опорами 3. Для контроля глубины запрессовки служит индикатор 4. Все элементы приспособления имеют шарнирное крепление. Такое приспособление монтируют на штоке 5 пневматического пресса.  [c.259]


На рис. 7.16, а показаны трубопроводы с двумя последовательно расположенными поворотами на 90° и схема вторичных течений в поперечном сечении за вторым поворотом (сечение Л—А). Здесь виден парный вихрь, в котором участвуют пленка и капли, утолщения пленки у вогнутой и выпуклой стенок и вихревые вторичные течения несущей фазы с каплями. Распределение коэффициентов потерь в этом сечении весьма неравномерное максимальные потери обнаружены вблизи выпуклой, а минимальные— у вогну-  [c.254]

У каждой детали до обработки измеряли наружный диаметр, а после обработки — средний диаметр накатанной резьбы. При этом измерения до обработки составили массив х[1 п], а после обработки — массив i/[l п. Эту информацию обрабатывали на ЭВМ по программе расчета параметров регрессии и парной корреляции, приводимой в приложении П. Предварительно по программе статистической обработки данных было установлено, что выборки следуют нормальным законам распределения н были исключены все резко выделяющиеся значения. Затем был проведен регрессионный анализ и получены следующие результаты Х=11,97 мм К=11,35 мм Sx =0,0187 мм, Sy =0,0242 мм- г у =0,78 Т1 у = 0,783.  [c.75]

Функцию щ (г) мы будем кратко называть парным распределением. В неоднородной системе можно определить, парное распределение следуюпщм образом. Запишем функцию щ в переменных qi, qi — qs, а именно п (qi, q ) s щ (qi, qi — q ). Затем введем функцию  [c.256]

Разложение в ряды можно провести также и для парной функции распределения, но по той же самой причине нельзя ожидать, что это приведет к успеху. Однако в случае парного распределения удается обойти трудности, делая более или менее сложные допущения относительно свойств частичных функций распределения. Обычный подход здесь заключался бы в использовании цепочки уравнений Ивона (разд. 7.4) и введении априорных допущений, позволяюш их оборвать эту цепочку на уровне парной функции распределения. Можно было бы также, исходя из формального разложения в ряд, выбрать определенный (бесконечный) класс диаграмм и показать, что соответствующая приближенная парная фунищя распределения подчиняется замкнутому уравнению. Следует подчеркнуть тот факт, что подобным процедурам никогда не удается дать вполне строгое обоснование — они всегда содержат элемент угадывания, результаты которого могут оказаться более или менее успешными. Тем не менее в последнее время некоторые приближенные процедуры такого типа дали поразительно хоропше результаты мы обсудим их в последуюпщх разделах.  [c.283]

В нулевом приближении парное распределение сводится к больц-иановскому фактору ехр (—рУ), который представляет собой  [c.304]

В жидкости из твердых сфер, как это можно видеть из фиг. 8.6.4, нет резкого перехода газ — жидкость. Наше утверждегае основано на форме парного распределения, у которого при т) 0,2 еще не обнаруживается второй лик, характерный для ближнего порядка.  [c.308]

Имеется важное различие между системой с потенциалом ЛД и системой твердых сфер. В последнем случае из-за сингулярной природы потенциала температура практически не влияет на физические величины. Это видно из соотношения (8.4.2), которое означает, что парное распределение, так же как и макроскопическая сжимаемость, зависит лишь от плотности. В реальном газе, однако, температура играет решающую роль. Из элементарной физики мы знаем, что сжимаемость как функция плотности (или, эквивалентно, давление как функция объема) ведет себя раэличным образом при разных температурах это поведение отображается набором кривых, называемых изотермами, построенных в плоскости фР/п, га) (или в плоскости Р— V). Интервал температур делится на две качественно различные области критической температурой Те. Если Т С Тс, то при определенной плотности имеет место резко выраженный фазовый переход газ — жидкость, эатем следует область значений плотности, при которых пар и жидкость сосуществуют, и, наконец, область значений плотностей, где среда находится действительно в жидком состоянии. Трудные проблемы, относящееся к критическим явлениям и фазовым переходам, будут обсуждаться в гл. 9 и 10.  [c.312]

Применение ПЙ-уравнения к ЛД-системе дает хорошее приближенное выражение для щ (г) при низких плотностях, но непригодно при высоких плотностях. Это можно видеть из кривой на фиг. 8.6.7, которая соответствует истинно жидкому состоянию Т == 0,88, п = 0,85). Первый максимум слишком высок и сдвинут влево. Однако по мере дальнейшего увеличения плотности обнарзживается новая удивительная особенность парное распределение может быть с поразительной степенью точности аппроксимировано парным распределением системы твердых сфер. Это ярко проявляется при рассмотрении фурье-образа парной корреляционной функции, т. е. структурного фактора а , определяемого формулой (8.1.5). На фиг. 8.6.8 структурный фактор для системы твердых сфер (вычисленный методом молекулярной динамики) сравнивается с экспериментальными данными для аргона и крип-  [c.313]

Этот неожиданный результат был объяснен Верле. Как следует из обсуждения, проведенного в разд. 7.5 и 8.3, парное распределение описывает отклик системы на пробную частицу, помещенную в начало координат. При высокой плотности обратная сжимаемость (дР дп) очень велика. В результате среда демпфирует дальнодействующий потенциал притяжения. Короткодействующая отталкивательная часть потенциала пробной частицы остается единственным нетривиальным фактором, определяющим парное распределение.  [c.314]

Получим влачале здесь в дополнение к 56 (о методе Боголюбова) выражение для энергии Гельмгольца через бинарную функцию распределения системы частиц с парным потенциалом взаимодействия Ф( Я1—Чг]).  [c.265]

Для количественной оценки взаимодействия разреженного потока газа с поверхностью необходимо знать динамические характеристики каждой молекулы или групп молекул перед соударением их со стенкой. Для оценки этих характеристик в молекулярно-кинетической еории используется функция распределения молекул по скоростям, которая описывается уравнением Больцмана. Для случая, когда молекулы взаимодействуют между собой в форме парных столкновений и нет других факторов, возмущающих движение молекул, а газ находится в стационарном состоянии, функция распределения найдена и известна под названием функции распределения Максвелла. Она используется при расчетной оценке теплоотдачи поверхности в свободно-молекулярном потоке газа.  [c.393]


Б 12 было показано (в рамках модели парного взаимодействия блин айших атомов), что в твердых растворах внедрения, где атомы некоторого элемента С занимают однотипные междоузлия кристаллической решетки металла, возможно возникновение упорядоченного распределения атомов С И вакантных междоузлии в резуль-  [c.190]

В случаях, когда сталь при закалке охлаждается с несколько меньшей скоростью, чем критическая, между парами линий появляется фон или так называемое внутреннее размытие линий. Это объясняется тем, что вследствие пониженного содержания углерода тетрагональность мартенсита (в некоторой части его объема) уменьшена. При недостаточной выдержке стали при температуре нагрева под закалку сталь не успевает перейти полностью в равновесное состояние, т. е. в такое состояние, при котором углерод равномерно распределен по всему объему аустенита. Кроме фона между парными линиями (внутреннее размытие), появляется также размытие внеиших сторон линий (внешнее размытие).  [c.26]

На рис. 3—5 приведены три вида парных кривых, показываюш,их характер распределения поверхностных напряжений и глубину распространения очага деформа-  [c.262]


Смотреть страницы где упоминается термин Парное распределение : [c.291]    [c.305]    [c.315]    [c.320]    [c.320]    [c.320]    [c.396]    [c.119]    [c.120]    [c.104]    [c.115]    [c.210]    [c.98]    [c.131]    [c.178]    [c.67]    [c.200]    [c.195]   
Равновесная и неравновесная статистическая механика Т.2 (1978) -- [ c.256 ]



ПОИСК



Определение парных функций распределения высокоразрешающими методами

Парная корреляционная функция и явления рассеяРазложение парной функции распределения в ряд по плотности

Парная функция распределения

Парная функция распределения Паули операторы

Парная функция распределения и интерференционная функция

Парная функция распределения. Теорема о вириале

Парное распределение БГИ уравнение

Парное распределение Ленна рда-Д жонса

Парное распределение гиперцепное уравнение

Парное распределение твердых сфер

Парный

Энергии плотность и парное распределение

Энтропия и парное распределение



© 2025 Mash-xxl.info Реклама на сайте