Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энтропия и парное распределение

С помощью этих формул вероятность может быть записана явно и получено среднеквадратичное значение флуктуаций (упр. 14.3). Более общую форму распределения вероятности можно получить из (14.1.14), где изменение энтропии из-за флуктуаций выражается через произведение парных переменных  [c.314]

Описание сильно неравновесных состояний, а также вычисление кинетич. коэф. производятся с помощью кинетического уравнения Больцмана. Это ур-ние представляет собой интегродифференц. ур-ние для одночастичной ф-ции распределения (в квантовом случае — для одночастичной матрицы плотности, или статистич. оператора). Оно содержит члены двух типов. Одни описывают изменение ф-ции распределения при движении частиц во внеш. полях, другие — при столкновениях частиц. Именно столкновения приводят к возрастанию энтропии неравновесной системы, т, е. к релаксации. Замкнутое, т. е. не содержащее др. величин кинетич. ур-ние, невозможно получить в общем виде. При его выводе необходимо использовать малые параметры, имеющиеся в данной конкретной задаче. Важнейшим примером является кинетич. ур-ние, описывающее установление равновесия в газе за счёт столкновений между молекулами. Оно справедливо для достаточно разреженных газов, когда длина свободного пробега велика по сравнению с расстояниями между молекулами. Конкретный вид этого ур-ния зависит от эфф. сечения рассеяния молекул друг на друге. Если это сечение известно, ур-ние можно решать, разлагая искомую ф-цию по ортогональным полиномам. Таким способом можно вычислить кинетич. коэф. газа, исходя из известных законов взаимодействия между молекулами. Кинетич. ур-ние учитывает только парные столкновения между молекулами и описывает только первый неисчезающий член разложения этих коэф. по плотности газа. Удалось найти и более точное ур-ние, учитывающее также тройные столкновения, что позволило вычислить следующий член разложения.  [c.672]



Смотреть страницы где упоминается термин Энтропия и парное распределение : [c.14]   
Равновесная и неравновесная статистическая механика Т.2 (1978) -- [ c.264 , c.266 , c.271 ]



ПОИСК



Парное распределение

Парный

Энтропия



© 2025 Mash-xxl.info Реклама на сайте