Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление пластической деформации выносливость

Предельное состояние по несущей способности, которая характеризуется нагрузками, соответствующими предельным состояниям по прочности, устойчивости, выносливости, сопротивлению пластическим деформациям. Эти нагрузки могут быть силами Р, моментами М, давлениями [c.335]

Кольца, шарики и ролики изготовляют из сталей, обладающих высокими сопротивлениями пластической деформации, контактной выносливостью и износостойкостью.  [c.366]


Другим дополнительным эффектом катодной защиты является повышение предела выносливости конструкционной стали в морской воде. Предел выносливости стали может возрастать на 75—140%, причем повышается прочность стали как при сжатии, так и при растяжении. Повышение прочности и связанное с ним повышение выносливости объясняются снижением интенсивности эффективных механических напряжений на острие трещин в металле и повышением сопротивления пластической деформации за счет образования в трещинах известковых  [c.94]

В Марочник включено 8 марок рессорно-пружинной стали. Подшипниковые стали, должны обладать высоким сопротивлением пластической деформации, высокой контактной выносливостью и износостойкостью, а следовательно, и высокой твердостью при достаточной пластичности иметь низкое содержание неметаллических включений. Поэтому для ответственных подшипников применяется металл, полученный путем дугового вакуумного и электрошлакового переплава обычной электростали.  [c.12]

Помимо проверки на выносливость, обычно выполняют расчет на статическую прочность (по сопротивлению пластическим деформациям), подставляя в формулу (10.32) взамен Па и Пх соответственно Пат И Пхт , определяемые по формулам (10.27), (10.28).  [c.427]

В общем случае экстремальные значения истинного сопротивления разрыву гладких образцов 5,( не совпадают ни с продольным направлением, ни с поперечным (рис. 10.6). То же относится и к анизотропии предела выносливости. Построение зависимостей указанных характеристик от направления нагружения может быть выполнено по той же методике, которая была применена для построения зависимости сопротивления пластической деформации. Для сталей и легких сплавов анизотропия сопротивления усталости обычно проявляется более  [c.336]

Механические свойства определяются характеристиками сопротивления статическому разрушению (пределы прочности при растяжении, сжатии, срезе), сопротивления пластическим деформациям (пределы текучести), сопротивления усталостному разрушению (пределы выносливости), сопротивления длительному статическому разрушению, сопротивления мгновенному разрушению (пределы текучести и прочности при скоростном деформировании), а также ударной вязкостью и твёрдостью.  [c.332]


Кроме коэффициента запаса прочности по отношению к пределу выносливости, необходимо вычислять коэффициент запаса прочности по сопротивлению пластическим деформациям, т. е. по отношению к пределу текучести [или (0,55 —0,60) Стт].  [c.315]

Прочность при переменных напряжениях характеризуется сопротивлением усталостному разрушению (выносливость) или сопротивлением пластическим деформациям.  [c.229]

На сопротивление усталости существенно влияет среда не только в смысле коррозии, но также в смысле температурных условий работы конструкций. Понижение температуры затрудняет пластическую деформацию и приводит к повышению выносливости, особенно для полированных образцов из малоуглеродистых пластичных и хладноломких сталей. В области закритической температуры для хрупкого состояния пределы выносливости приближаются к критическим напряжениям, достаточным для хрупкого разрушения и значительно (в 1,5—2 раза) превышающим значения o i для комнатной температуры при отсутствии концентрации напряжений. При наличии концентрации напряжений повышение (а 1)к также имеет место, но в меньшей степени (в 1,3—1,5 раза). Наименее выражено повышение пределов выносливости с понижением температуры у вязких хромоникелевых сталей и легких сплавов, не обладающих выраженной хладноломкостью. Однако  [c.160]

Таким образом, если при многоцикловой усталости уровень предела выносливости в основном определяется шероховатостью поверхности наличием дефектов и остаточных напряжений, при малоцикловой усталости величина циклической прочности и долговечность определяются сопротивлением поверхностных слоев пластической деформации и степенью однородности протекания микропластических деформаций.  [c.196]

Предварительная пластическая деформация повышает предел выносливости стали в коррозионной среде и более заметно — в воздухе. Максимальное повышение сопротивления коррозионно-усталостному разрушению (а = 180 МПа) достигается при остаточной деформации 5 =20 %. После такой деформации предел выносливости стали в воздухе возрастает с 270 до 340 МПа. Повышение степени деформации выше указанного значения вследствие появления субмикротрещин приводит уже к некоторому снижению коррозионной выносливости.  [c.64]

Для сварных соединений и элементов конструкций, подвергавшихся предварительной пластической деформации при определении допускаемых величин [а ] и [7 ], учитывается снижение разрушающих амплитуд напряжений путем введения коэффициента фс, а также снижение пластичности и предела выносливости за счет остаточных напряжений в соответствии с п. 4. Кроме того, при расчете [от ] и [ТУ] должно быть учтено снижение сопротивления разрушению от деформационного старения и нейтронного облучения.  [c.238]

Результаты экспериментальных исследований показывают, что пределы выносливости резьбовых соединений значительно зависят от метода изготовления резьбы. В табл. 7.1 приведены значения Оап болтов с резьбой, выполненной различными методами. Установлено благоприятное влияние пластических деформаций при накатывании резьбы на сопротивление усталости соединений. Оно обусловлено в основном созданием остаточных напряжений и в меньшей степени улучшением структуры материала.  [c.237]

Стали поступают в виде проволоки и ленты, а также горяче-и холоднокатаного проката или катанки, из которых изготовляют пружины. Стали для пружин (ГОСТ 14959—79) должны обладать высокими сопротивлением малым пластическим деформациям Оо,оо5. сго,з). пределом выносливости (о. ) и релаксационной стойкостью при достаточной пластичности и вязкости.  [c.286]

При напряжениях, меньших предела выносливости, микротрещины остаются в наружном слое толщиной не более размера зерна, поскольку границы зерен — барьеры для их распространения. При напряжениях выше предела выносливости микротрещины преодолевают границы зерен, сливаются, образуя магистральную трещину усталости. Трещина усталости растет прерывисто — скачками, связанными с местной пластической деформацией (наклепом) металла у ее вершины. Для распространения трещины на некоторую длину необходимо, чтобы у ее вершины была исчерпана пластичность. По этой причине у пластичных металлов сопротивление распространению трещины усталости много выше, чем ее зарождению. Увеличению сопротивления зарождению трещины усталости способствует структурное состояние, препятствующее движению дислокаций и их выходу на поверхность. Наиболее эффективно его создают поверхностным упрочнением.  [c.274]


Повышение контактной выносливости, как и при объемной усталости, основано на увеличении сопротивления поверхностного слоя деталей развитию пластической деформации.  [c.333]

Для сварных соединений и элементов конструкций, подвергающихся предварительной пластической деформации, при определении допустимых [ец ) и [Л 1 учитывают снижение разрушающих амплитуд напряжений введением коэффициента фе, а также пластичности и предела выносливости, вызванными напряжениями 00- Кроме того, при расчете (ea]([a J) и [Л ] должно быть учтено снижение сопротивления разрушению от деформационного старения.  [c.135]

Нередки случаи, когда передачи в отдельные периоды работы испытывают кратковременные перегрузки (пиковые нагрузки). Общее число циклов нагружения, соответствующих этим перегрузкам, обычно невелико и они практически не оказывают влияния на усталостную прочность вала (см. так же стр. 231, где сказано об учете пиковых нагрузок в расчетах зубчатых передач). Поэтому расчет на выносливость ведут по длительно действующей нагрузке — обычно по номинальной нагрузке (см. стр. 221) передачи. Но игнорировать пиковые нагрузки нельзя — по этим нагрузкам вал должен быть проверен на статическую прочность (или точнее — на сопротивление малым пластическим деформациям). Этот расчет выполняют по гипотезе энергии формоизменения (можно применять также гипотезу наибольших касательных напряжений)  [c.369]

Если величина напряжений превышает сопротивление отрыву и металл мало пластичен, то напряжения не могут быть уменьшены вследствие пластической деформации. Это вызывает образование трещин. Наиболее опасны при этом растягивающие напряжения на поверхности, которые способствуют образованию трещин и снижают предел выносливости стали.  [c.226]

Сталь должна обладать хорошей закаливаемостью и прокаливаемостью, что достигается выбором соответствующего состава. После закалки мартенситная структура должна быть по всему объему. Присутствие после закалки продуктов эвтектоидного или промежуточного превращения, феррита, перлита, а также остаточного аустенита ухудшает все пружинные свойства. Чем мельче зерно, тем выше сопротивление стали малым пластическим деформациям. Наличие обезуглероженного слоя на готовых пружинах резко снижает пределы упругости и выносливости.  [c.305]

Модель процесса накопления усталостных повреждений. Рассмотрим стержневую систему, изображенную на рис. 5 и находящуюся под действием повторных нагрузок. Механические свойства ее элементов (модули упругости и упрочнения, предел текучести, сопротивление отрыву и т. д.) предполагаются случайными величинами, что позволяет моделировать случайную структуру поликристаллического материала. При первом нагружении пластические деформации возникают в наиболее слабых и наиболее нагруженных элементах, а после снятия нагрузки возникает система остаточных напряжений. Повторные нагружения изменяют эту картину в отдельных элементах происходит процесс упрочнения, пока местное напряжение не достигнет величины сопротивления отрыву для данного элемента. Разрыв единичных элементов соответствует появлению субмикроскопических трещин при усталостном разрушении. Процесс выхода из строя одного элемента за другим моделирует процесс развития прогрессирующей усталостной трещины. Наибольшее значение периодической нагрузки (при заданном режиме ее изменения), при котором еще имеет место упруго-пластическая приспособляемость системы, соответствует пределу выносливости для поликристаллического тела. Таким образом, модель передает наиболее существенные черты усталостного разрушения [6].  [c.155]

Эти стали и сплавы используют при различных напряжениях, температурах и в разных средах (на воздухе и в коррозионноактивных). Разнообразные по составу и свойствам пружинные стали целесообразно распределить на стали и сплавы 1) с высокими механическими свойствами — это углеродистые и легированные стали, которые должны в первую очередь иметь высокое сопротивление малым пластическим деформациям (предел упругости или предел пропорциональности), высокий предел выносливости и повышенную релаксационную стойкость при достаточной вязкости и пластичности (табл. 28) 2) с дополнительными химическими и физическими свойствами немагнитные, коррозионно-стойкие, с низким и постоянным температурным коэффициентом модуля упругости, с высокой электропроводностью и др.  [c.407]

Для повышения работоспособности деталей в условиях эксплуатации важно не только сопротивление конструкционного материала пластической деформации и разрушению при квазистатическом приложении нагрузки, но и сопротивление разрушению при периодическом нагружении. При увеличении прочности традиционными методами повышение сопротивления разрушению сталей неизбежно сопровождается падением пластичности и увеличением склонности к хрупкому разрушению. Эта взаимосвязь объясняет экспериментально установленную зависимость между прочностью при квазистатическом (плавном возрастании нагрузки) и прочностью при периодическом нагружениях. Предел выносливости увеличивается при росте временного сопротивления сталей до 1300—1500 МПа, а затем при дальнейшем увеличении последнего сопротивление усталости стали существенно не возрастает, а в некоторых случаях даже уменьшается.  [c.86]

При некоторых значениях коэффициента ассимметрии цикла Яа или Кх) может оказаться, что коэффициент запаса по отношению к пределу текучести меньше, чем по отношению к пределу выносливости. В этих случаях обычно считают, что решающую роль играет расчет по сопротивлению пластическим деформациям, т. е, величина коэффициента запаса по текучести. Поэтому, помимо определения коэффициента запаса по одной из формул (10.22) — (10.24), следует определить коэффициент запаса  [c.426]


В зависимости от асимметрии цикла разрушения могут происходить от усталостных изломов, носяш их хрупкий характер, без предварительного образования пластических деформаций или после их образования. В первом случае прочность характеризуется пределами выносливости, а во втором — сопротивлением пластическим деформациям, т. е. пределом текучести.  [c.380]

Рессорно-пружинные стали общего назначения должны обладать высоким сопротивлением малым пластическим деформациям и пределом выносливости при достаточных пластичности и сопротивлении хрупкому разрушенто иметь повышенную релаксационную стойкость.  [c.273]

Прочность — главный критерий работоспособности для большинства деталей. Деталь не должна разрушаться или получать пластические деформации при действии на нее нагрузок. Различают статическую потерю прочности и усталостные поломки деталей. Потеря прочности происходит тогда, когда значение рабочих напряжений превышает предел текучести а,, для пластичных материалов или предел прочности ст для хрупких материалов. Это связано обычно со случайными перегрузками, не учтенными при расчетах, или со скрытыми дефектами деталей (раковины, трещины и т. п.). Усталостные поло.мки вызыва -отся длительным действием переменных напряжений, значение которых превышает характеристики выносливости материалов (например, о ,). Основы расчета на прочность и усталость были рассмотрены в разделе Сопротивление материалов . Здесь же общие законы расчетов на прочность т усталость рассматривают в применении к конкретным деталяму  [c.260]

Применение механотермической обработки (МТО), которая Заключалась в предварительной пластической деформации заготовок образцов растяжением на 20 % и последующего старения, дало возможность увеличить предел выносливости стали с 270 до 350 МПа (см. рис. 26) максимальный условный предел коррозионной выносливости при этом достигает 320 МПа. Применение механотермической обработки нержавеющих аус-тенитных сталей обусловливает увеличение плотности и равномерности распределения в них дислокаций и их полигонизацию. Повышение сопротивления усталостному и коррозионно-усталостному разрушению стали после МТО объясняется затруднением движения полигонизованных дислокаций, а также затормаживанием диффузионных процессов. Резкое снижение упрочняющего эффекта при нагреве стали до 800°С происходит из-за интенсивных рекристаллизационных процессов выделения и коагуляции вторичных фаз.  [c.64]

Автор совместно с М.О.Левицким изучал влияние содержания углерода и термической обработки углеродистых сталей на время до зарождения и скорость роста усталостных трещин в различных средах. Показано (рис. 41), что максимальная долговечность до зарождения трещины в воздухе, 3 %-ном растворе Na I и 20 %-ном растворе H2SO4 наблюдается у стали 45 при HR 38, а у стали У8 при HR 45, что соответствует тро-оститной структуре. Мартенситная структура обладает наиболее низким сопротивлением развитию усталостных трещин вследствие затруднения пластической деформации и значительных напряжений И рода. Сорбитная и трооститная структуры благодаря высокой дисперсности карбидной фазы затрудняют движение дислокаций и обладают наибольшей выносливостью.  [c.87]

Результаты экспериментального исследования влияния высоты гайки на сопротивление усталости, проведенного Г. Вигандом, К.-Г. Иллгнером и К. Г. Беелихом [45] (табл. 6.15) показывают, что при Я 1,25 предел выносливости стальных соединений практически не повышается. Если Н = (0,8. .. 1,25Ы, значение сГап увеличивается на 5. .. 12 %. Это обусловлено пркменением низкопрочных гаек и высоким средним напряжением, приводящим к появлению местных пластических деформаций в резьбе и улучшению распределения нагрузки.  [c.203]

Приборостроение [12, 21, 28]. Высокое сопротивление малым пластическим деформациям, значительно более высокий уровень максимальной упругой деформации, определяемой отношением чем у сталей других классов, повышенная малоцикловая выносливость в сочетании с возможностями широкого применения холодной пластической деформации, хорошей свариваемостью и коррозионной стойкостью определяют преимущества мартенситно-ста-реющих сталей как пружинного материала. При формировании двухфазной структуры (а + -у) эти стали могут обладать элинварными свойствами в диапазоне климатических температур, что существенно расширяет диапазон использования упругих элементов из этих сталей.  [c.46]

Однако основным свойством, которым должны обладать npyxiriHHbie стали и сплавы, является высокое сопротивление малым пластическим де(]юр-мациям как в условиях кратковременного (предел упругости), так и длительного (релаксационная стойкость) нагружения, зависящее от состава и структуры этих материалов, а также от параметров воздействия на ннх внешних условий — температуры, коррозионной активности внешней среды и др. Между сопротивлением малым пластическим деформациям и пределом выносливости во многих случаях существует корреляционная снязь. Установлена также связь между сопротивлением малым пластическим деформациям и степенью развития таких неупругих эф4 ектоБ, как амплитудно-зависимое внутреннее трение, упругое последействие (прямое и обратное) и упругий гнстере-вис.  [c.204]

Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточнал деформация. В связи с этим пружинные сплавы кроме механических свойств, характерных для конструкционных материалов (прочности, пластичности, вязкости разрушения, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью.  [c.349]

Основными требованиями, предъявляемымн к рессорно-пружинным сталям, являются высокое сопротивление малым пластическим деформациям (высокий предел упругости), высокий предел выносливости и повышенная релаксационная стойкость с сохранением упругих свойств в течение длительного времени,  [c.192]


Смотреть страницы где упоминается термин Сопротивление пластической деформации выносливость : [c.17]    [c.648]    [c.305]    [c.213]    [c.17]    [c.118]    [c.56]    [c.88]    [c.121]    [c.22]    [c.346]    [c.121]    [c.35]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.197 , c.209 ]



ПОИСК



Выносливость

Деформация пластическая

Пластическая деформаци

Пластическая сопротивление

Сопротивление деформациям

Сопротивление пластическим деформациям



© 2025 Mash-xxl.info Реклама на сайте