Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал алюминия сплавов в морской

Стандартный потенциал алюминия равен —1,66 В. На его поверхности при доступе воздуха образуется довольно плотная окисная пленка толщиной порядка 0,1 мкм с хорошими защитными свойствами. Она состоит в основном из окиси алюминия в аморфном или кристаллическом состоянии и из гидроокиси алюминия. Поскольку окисные пленки, образующиеся на алюминиевых сплавах, включают еще и окиси легирующих элементов, они менее плотные, чем на чистом алюминии. Однако в некоторых случаях (напрпмер, А1 — Mg-сплавы в морской воде) это приводит к повышению коррозионной устойчивости.  [c.132]


При получении покрытия из расплава в ванну с расплавленным алюминием обычно добавляют кремний, чтобы затруднить образование слоя хрупкого сплава. Полученные из расплава покрытия используют для повышения устойчивости к окислению при умеренных температурах таких изделий, как отопительные устройства и выхлопные трубы автомобилей. Они стойки к действию температуры до 480 °С. При еще более высоких температурах покрытия становятся огнеупорными, но сохраняют защитные свойства вплоть до 680 °С [21]. Использование алюминиевых покрытий для защиты от атмосферной коррозии ограничено вследствие более высокой стоимости по сравнению с цинковыми, а также из-за непостоянства эксплуатационных характеристик. В мягкой воде потенциал алюминия положителен по отношению к стали, поэтому покрытие является коррозионностойким, В морской и некоторых видах пресной воды, особенно содержащих С1" и SO4", потенциал алюминия становится более отрицательным и может произойти перемена полярности пары алюминий—железо. В этих условиях алюминиевое покрытие является протекторным и катодно защищает сталь. Показано, что покрытие из сплава А1—Zn, состоящего из 44 % Zn, 1,5 % Si, остальное — А1, имеет очень высокую стойкость в морской и промышленной атмосферах. Оно защищает также от окисления при повышенных температурах.  [c.242]

Алюминий и особенно его сплавы широко используются в промышленности. В химической промышленности алюминиевые сплавы применяют для изготовления деталей теплообменной аппаратуры, в том числе эксплуатирующейся в контакте с морской водой. Особенностью электрохимического поведения алюминия является его коррозионная стойкость лишь в относительно узком интервале pH. На рис. 1.7 в координатах потенциал — pH представлена диаграмма, показывающая условия протекания коррозии и границы коррозионной стойкости алюминия в морской воде. Отсутствие коррозионного процесса характеризуется на диаграмме областью коррозионной стойкости (область инертности) и областью пассивности. В области пассивности на поверхности алюминия имеется барьерная пленка состава АЬОз-НгО.  [c.28]

Протекторная защита схематически представлена на рис. П-31. К корродирующей конструкции, находящейся в среде электролита, например к стальной детали в морской воде, присоединяют электрод, изготовленный из сплава весьма электроотрицательного металла (например, магния, цинка или алюминия). В образовавшейся контактной паре стальная конструкция служит катодом, а присоединенный электрод — анодом. Благодаря работе контактной пары в цепи появляется электрический ток, анод подвергается систематическому растворению, а потенциал защищаемой конструкции понижается до такой величины, что на всей его поверхности становится возможной только реакция восстановления. Растворяющийся электрод называется растворимым анодом или протектором..  [c.51]


Особо следует остановиться на поведении пассивных металлов и соотношении поверхностей контактирующих металлов. Сплавы, подобно нержавеющим сталям, которые в морской воде могут находиться как в активном, так и в пассивном состоянии, оказывают различное влияние. Будучи в пассивном состоянии, они усиливают коррозию менее благородных металлов, таких как алюминий, сталь и медные сплавы. Если же они находятся в активном состоянии, то претерпевают сами сильную коррозию при контакте с материалами, обладающими более положительным, чем они сами в активном состоянии, потенциалом (медные сплавы, титан, хастеллой и т. д.). В связи с этим наблюдается часто при развитии питтинговой коррозии сильная коррозия нержавеющих сталей при контакте их с более благородными металлами. При контакте нержавеющих сталей с такими неблагородными металлами, как малоуглеродистая сталь, цинк, алюминий, потенциал которых отрицательнее потенциала нержавеющих сталей в активном состоянии, последние электрохимически защищаются. Аналогичным образом можно добиться защиты от общей и точечной коррозии и менее легированных сталей. В частности, сообщается, что крыльчатки из хромистой стали Х13 обнаруживают высокую стойкость в насосах с чугунными корпусами при перекачке морской воды.  [c.171]

Цинк, стандартный потенциал которого = —0,763 в, применяется в основном при производстве латуней, а также для протекторов и в качестве материала для защитных покрытий (оцинкованное кровельное железо и т. п.). Цинк весьма энергично растворяется с выделением водорода в минеральных кислотах, в окисляющих средах не пассивируется. В растворах хрома-тов на поверхности цинка образуется защитная пленка из хромата цинка. В нейтральных растворах корродирует в основном с кислородной деполяризацией. В щелочах не стоек (см. рис. 17). Скорость коррозии в воде мала. Она несколько возрастает в интервале температур 55—65° С, в воде при 100° С цинк стоек. В чистой и морской атмосферах стоек, однако при содержании в обычной атмосфере загрязнений SO2, НС1, SO3 стойкость цинка сильно снижается. Цинковые покрытия на железе создают анодную защиту. Из сплавов на цинковой основе известен сплав, из которого получают изделия литьем под давлением. Он легирован медью (1,5—2,5%) и алюминием (0,5—4,5%). Коррозионная стойкость этого сплава в воде и по отношению к водяному пару невысокая.  [c.59]

Протекторная защита состоит в том, что к защищаемой конструкции присоединяют металл или сплав, электродный потенциал которого электроотрицательнее потенциала защищаемой конст- рукции в данной коррозионной среде. В морской воде или грунте материалом протекторов является чистый цинк или сплавы цинка с алюминием. Иногда применяют также сплавы на основе магния. В таком гальваническом макроэлементе протектор служит анодом и в процессе защиты постепенно электрохимически растворяется. Коррозия защищаемой конструкции — катода полностью прекращается или значительно уменьшается. Несмотря на увеличение общего тока элемента, локальный коррозионный ток защищаемой конструкции (ток микропар) после присоединения к ней протектора значительно уменьшается. Эффективность катодной защиты характеризуют величиной защитного эффекта  [c.83]

Сопоставление стационарного потенциала алюминия с критическими точками на анодной поляризационной кривой показывает, что из-за наличия на поверхности алюминия устойчивой в нейтральных средах фазовой окисной пленки алюминий и его сплавы в водных растворах и в морской воде корродируют в области потенциалов пробоя (см. область III, рис. 223).  [c.512]

Рис. 16. Влияние концентрации кислорода в морской воде па электродный потенциал сплавов алюминия Рис. 16. <a href="/info/499708">Влияние концентрации кислорода</a> в <a href="/info/39699">морской воде</a> па <a href="/info/32079">электродный потенциал</a> сплавов алюминия

Титан является термодинамически очень активным металлом. Его равновесный электрохимический потенциал (по отношению к 1 N водородному электроду) равен —1,63 б, т. е. близок к равновесному потенциалу алюминия. Стационарный потенциал титана вследствие большой склонности к образованию защитных пассивных пленок гораздо положительнее и, например, в морской воде при 25° равен около +0,09 в, т е. гораздо более положителен, чем у цинка, кадмия, железа, алюминия и даже чем у меди и медных сплавов в этой среде Только благо-  [c.567]

В работе [228] были определены потенциалы 16 металлов а аэрированной морской воде при температурах от 30 до 200 "С. Как правило, все металлы становились более электроотрицательными по мере повышения температуры. Наиболее активными при 30 С были углеродистая сталь, алюминиевые сплавы и цинк. При 200 С потенциал углеродистой стали смещается к более положительным значениям, а алюминий и цинк по-прежнему остаются наиболее активными. Электрохимический ряд напряжений в аэрированной морской воде при 200 С для исследованных металлов выглядит следующим образом (в порядке убывания потенциала)  [c.198]

Широко применяют литейные магниевые сплавы (главным образом, типа МЛ—4) в качестве протекторов для защиты железных конструкций в почвенных и морских условиях. Высокий отрицательный потенциал магния сообщает протекторам из магниевых сплавов наибольшую электрохимическую эффективность по сравнению с протекторами из сплавов на основе цинка или алюминия, а небольшой эквивалентный вес магния делает протекторы из магние-  [c.274]

Для защиты водяных камер, стальных трубных досок и концов трубок конденсаторов, охлаждаемых высокоминерализованной или морской водой (5>8000 мг/л), применяют пластичные антикоррозионные покрытия, служащие также для уплотнения вальцовочных соединений. Применяют также протекторную защиту, которая состоит в том, что в водяные камеры помещают пластины из металла, имеющего более отрицательный электродный потенциал, чем сталь или латунь (например, цинк, магний, алюминий и их сплавы), соединенные с корпусом конденсатора через изолятор или катодную защиту. При такой защите к помещенным в водяных камерах пластинам из чугуна или стали, являющимся анодом, подводится постоянный ток напряжением 15—25 В. В обоих случаях защищаемые детали являются катодом и не разрущаются, а разрушаются аноды—пластины. Однако средняя часть трубок конденсатора, удаленная от пластин, этими способами от коррозии высокоминерализованной водой не защищается. Трубные доски конденсаторов, охлаждаемых морской водой, обычно делают из медных сплавов.  [c.191]

Широкое применение находят литейные магниевые сплавы (главным образом типа МЛ-4, а также МЛ-5) в качестве протекторов для защиты стальных конструкций в почвенных и морских условиях. Сильно отрицательный потенциал магния сообщает протекторам из магниевых сплавов большую электрохимическую эффективность по сравнению с протекторами на основе сплавов цинка или алюминия, а небольшой электрохимический эквивалент магния делает протекторы из магниевых сплавов, несмотря на их заметно повышенную по сравнению с цинком скорость саморастворения, наиболее экономичными, т. е. позволяет получить максимальное количество электричества на 1 кг растворенного материала протектора. Уже многие тысячи протекторов из магниевых сплавов защищают каши магистральные трубопроводы от почвенной коррозии.  [c.554]

Расчетное значение потенциала алюминия лежит между потенциалами магния и цинка. В воде или грунтах алюминий имеет склонность к пассивации с соответствующим сдвигом потенциала к потенциалу стали. Тогда он перестает выполнять функцию протектора. Для предотвращения пассивации в околоэлектрод-ное пространство можно вводить специальное вещество для создания среды, содержащей хлориды засыпка). Однако это может служить только временной мерой. В морской воде пассивацию лучше всего предупреждать, используя сплавы. Например, сплавление алюминия с 0,1 % Sn с последующей термообработкой при 620 °С в течение 16 ч и закалкой в воде для удержания олова в состоянии твердого раствора очень сильно уменьшает анодную поляризацию в хлоридных растворах [6]. Коррозионный потенциал такого сплава в 0,1т растворе Na l составляет—1,2 В по сравнению с —0,5 В для чистого алюминия. Некоторые алюминиевые протекторы содержат 0,1 % Sn и 5 % Zn [7, 8]. Протекторы с 0,6 % Zn, 0,04 % Hg и 0,06 % Fe при испытаниях в морской воде в течение 254 дней работали с выходом по току 94 % (2802 А-ч/кг). В настоящее время в США на производство протекторов из таких сплавов ежегодно расходуют примерно  [c.219]

На поведение алюминия как амфотерного металла значительное влияние оказывает и pH. В период фотосинтеза pH морской воды равен 9,7 [85]. Поэтому наряду с депассивирующим действием хлор-ионов и щелочность морской воды способствует разрущению защитной пленки на поверхности алюминия. В результате этого установление отрицательных значений потенциала на алюминиевых сплавах в морской воде вполне закономерно.  [c.55]

Следует, однако, иметь в виду, что потенциалы питтингооб-разования алюминия, алюминиево-магниевых и алюминиево-магниево-марганцевых сплавов в морской воде практически не зависят от их химического состава. Различие в поведении этих сплавов проявляется в том, что в морской воде у них устанавливаются неодинаковые потенциалы коррозии. У алюминиево-цинково-магниевых сплавов потенциал питтингообразования более отрицателен, чем у других алюминиевых сплавов. Для этога же сплава область пассивации наиболее узкая. Общим в коррозионном поведении всех алюминиевых сплавов в морской воде является то, что их коррозия, как правило, протекает с катодным контролем [18].  [c.29]


Протекторная зашита стальных и железных конструкций широко используется в морской воде или растворах солей в зоде и мало пригодна в речной воде. Протекторами для железа и стали являются цинк, алюминий и магний, а также сплавы на основе этих металлов, например сплав магния с 6% А1 и 3% 2п, сплак алюминия с 5% 2п и сплав цинка с 5% А1. Из указанных протекторов наиболее эффективным является магниевый сплав, потенциал которого в морской воде мало изменяется и равен—1,2 в. Худшие результаты дают алюминий и его сплавы, так как при этом возникает более высокий потенциал (—0,67 в), который в дальнейшем еше повышается вследствие поляризации через некоторое время такой протектор может вообще прекратить свое действие. Цинк и цинковые сплавы занимают промежуточное положение. На цинковом сплаве в морской воде устанавливается потенциал, равный — 0,78 в, который с течением времени облагораживается и приближается к потенциалу железа, но не так близко, как алюминий.  [c.62]

Чем чище алюминий и чем меньше его структурная неоднородность, тем выше коррозионная стойкость. На коррозионную стойкость алюминиевых сплавов отрицательно влияют все примеси, особенно медь и железо, имеющие положительный потенциал. Для некоторых агрессивных сред опасны также комбинации примесей в алюминии. Например, кремний и железо, сами по себе мало растворяющиеся в алюминии, образуют тройное соедин2ние А1—Ре—51, нестойкое в азотной кислоте. Легирование марганцем не снижает коррозионной стойкости алюминия во многих средах. По коррозионным свойствам магний весьма напоминает алюминий, однако его окисная пленка имеет большую рыхлость. Содержание магния до 5,5% не снижает коррозионной стойкости сплава в морской воде.  [c.26]

Контакт со сталью, хотя и менее опасен, чем контакт с медью или свинцом, также может ускорять коррозию алюминия. Вместе с гем в некоторых естественных водных средах и в ряде других случаев алюминий может быть защищен за счет черных Leтaллoв, Нержавеющие стали способны усиливать разрушение алюминия, особенно в морской воде и в морской атмосфере, в то ите время высокое электрическое сопротивление поверхностных окис-ных пленок обоих материалов заметно ослабляет контактные явления в менее агрессивных средах. Титан ведет себя в это.м отношении аналогично стали. Сплавы алюминий—цинк, используемые в качестве расходуемых анодов для защиты стальных конструкций, содержат также небольшие добавки олова, индия или ртути, улучшающие характеристики растворения и смещающие потенциал к более отрицательным значениям.  [c.83]

При 368-суточных испытаниях различных промышленных сплавов алюминия в морской воде возле Ки-Уэст во Флориде их коррозионное поведение (наличие или отсутствие питтинга) зависело от присущего им коррозионного потенциала [7]. На сплавах с потенциалами от —0,4 до —0,6 В (большинство из них содержало легирующую добавку меди) образовались питтинги со средней глубиной 0,15—0,99 мм. На сплавах с более отрицательными значениями потенциала (от —0,7 до —1,0 В) питтинг практически не образовывался. Причина такого поведения сплавов становится понятной, если сопоставить указанные области коррозионных потенциалов со значением критического потенциала питтинго-образования в 3 % растворе Na l, которое составляет —0,45 В (см. разд. 5.5.2). Контакт образцов сплавов, склонных к питтингу, с пластинами активного алюминиевого сплава (см. разд. 12.1.2), который обеспечивал поляризацию металлов примерно до —0,85 В в основном успешно предотвращал образование питтинга в течение всего периода испытаний. Результаты этих испытаний в реальных условиях подтверждают предположение, что в отсутствие щелей алюминий и его сплавы при потенциалах ниже критического значения не подвергаются питтинговой коррозии.  [c.343]

В некоторых случаях образование гальванических пар дает положительный эффект. Например, питтииговая и общая коррозия алюмн-нпевых сплавов уменьшается при их соединении с алюминиевыми пли цинковыми анодами. В испытаниях, проведенных ВМС США, использование алюминиевого (или цинкового) растворимого аиода приводило к уменьшению средней глубины 5 наибольших питтингов на некоторых сплавах при 12-мес экспозиции в морской воде от 1,0 до 0,08 мм (табл. 57). Аноды из магния применять не следует, так как более высокий потенциал приведет к перезащите и повышению pH среды около катода. В более щелочной среде амфотерный алюминий будет корродировать.  [c.142]

В качестве материалов для анодов можно использовать также нержавеющие стали, тантал, покрытый родием (гальванически), титан, медные сплавы. Эффективно использование сплава А1-1п. В морской воде алюминий и некоторые сплавы алю-м йния имеют потенциал —700- —600 мВ — меньший, чем можно было ожидать, вследствие образования на поверхности оксидной пленки.  [c.95]

В морской воде стационарные потенциалы металлов увеличиваются в ряду М - 2п->-А1->Сс1-)-Ре- РЬ- 5п-)-->Ni- u Ti-) Ag. Поэтому каждый последующий металл при контактировании с предыдущим усиливает его коррозию. Чем больше удалены металлы друг от друга в указанном ряду, тем больше при одинаковых поляризационных характеристиках контактная коррозия. Так, например, стационарный потенциал дуралюмина (сплав системы А1—Си) в морской воде более отрицательный, чем у меди, никеля, стали 12X17 (Х17), олова, свинца, железа, но более положительный, чем у кадмия, алюминия и цинка. В соответствии с этим контактная коррозия дуралюмина в морской воде усиливается при контакте с медью, никелем, нержавеющей сталью, железом, оловом и свинцом. При контакте с кадмием, алюминием и цинком коррозия дуралюмина уменьшается.  [c.106]

Титан по уд. весу (4,5) занимает промежуточное место между сталью и легкими сплавами. Сплавы титана более прочные, чем стали. Активно взаимодействует с кислородом, водородом, азотом и приобретает хрупкость при температуре выше 600° С (например, после сварки). Стандартный потенциал титана V = —1,63 в, но из-за склонности к образованию защитных пленок на своей поверхности стационарный потенциал, например в морской воде, смещается до значения -1-0,09 в. Очень высока стойкость титана и его сплавов в нейтральных или слабокислых растворах хлоридов, а также в растворах окислителей, содержащих хлор-ионы. Достаточно стоек в НЫОз до 65%-ной концентрации при температурах до 100° С, в смеси 40% Н2504 + + 60% НЫОз при 35° С. В концентрированной НМОз при повышенных температурах скорость растворения титана выше, чем алюминия или нержавеющей стали. В разбавленных (до 20%) щелочных растворах не разрушается. Стоек против коррозионного растрескивания. Очень стоек в морской воде и морской атмосфере. Титан — жаропрочный металл. Ряд сплавов на основе титана имеет более высокие механические свойства, чем сам титан.  [c.60]

В табл. 31 приведен гальванпческии ряд металлов, распп.и -женных по возрастающе величине стационарного электродного потенциала в морской воде, текущей со скоростью 649 м/мин. Как видно из таблицы, разность электродных потенциалов между титаном и углеродистой сталью, алюминием, сплавами на медной основе довольно велика, поэтому контактная коррозия между ними может быть значительной. Разность потенциалов между титаном и другими устойчивыми в морской воде металлами очень незначительна, что предопределяет малую вероятность контактной коррозии. между этими металлами. Эти выводы подтверждаются данными диаграммы (фиг. 29), где приведены результаты испытаний титана в контакте с другими металлами, применяемыми в морских конденсаторах. В морской воде  [c.61]


Из таблицы нормальных потенциалов как будто бы следует, что алюминий должен защищать цинк. В действительности цинк защищает алюминий и его сплавы Акимов описал случай, когда четырехметровый стержень из дура-люмина, помещенный в морскую воду, защищался от коррозии цинком, помещенным на одном конце стержня измерения потенциала показали, что динк действительно функционирует как анод гальванического элемента в противоречии с таблицей нормальных потенциалов, в которой приведенные значения, конечно, соответствуют совершенно другим условиям [2].  [c.179]

Коррозионная устойчивость меди в значительной степени определяется положительным значением ее равновесного электродного потенциала (термодинамической устойчивостью), а для ее сплавов в некоторой степени также склонностью к пассивации. Скорость коррозии чистой меди в морской воде при постоянном погружении составляет 0,02— 0,07 мм год, а при переменном погружении 0,02—0,1 мм год, т. е. приблизительно можно считать, что устойчивость меди при постоянном погружении в два — пять раз выше, чем обычной стали. При переменном погружении преимущество меди делается еще более заметным (табл. 72). Латуни наиболее устойчивы в морской воде при содержании в них меди порядка 70%. Состав часто применяемой морской (адмиралтейской) латуни 70% меди, 29% цинка и 1 %олова. Латуни с более высоким процентом меди склонны к язвенной коррозии и разъеданию по ватерлинии. Латуни с меньшим процер.том меди склонны к коррозии обесцинкованием. Сопротивление коррозионной эрозии и кавитации (это важно, например, для гребных в интов) выше у латуни с более высоким содержанием цинка. Обесцинкование уменьшается добавлением мышьяка, сурьмы или фосфора. Добавка алюминия заметно повышает коррозионную стойкость латуни. Широкое применение морских условиях находит, например, алюминиевая латунь следующего состава 75% меди, 23% цинка, 2% алюминия.  [c.422]


Смотреть страницы где упоминается термин Потенциал алюминия сплавов в морской : [c.309]    [c.241]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.0 ]



ПОИСК



Алюминий и сплавы алюминия

Еж морской

Потенциал алюминия

Сплав алюминия

Сплавы, потенциалы в морской вод



© 2025 Mash-xxl.info Реклама на сайте