Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия речной

Наука о коррозии и защите металлов изучает взаимодействие металлов с коррозионной средой, устанавливает механизм этого взаимодействия и его общие закономерности. Своей конечной практической целью учение имеет защиту металлов от коррозионного разрушения при их обработке и эксплуатации металлических конструкций в атмосфере, речной и морской воде, водных растворах кислот, солей и щелочей, грунте, продуктах горения топлива и т. д.  [c.10]


Примерами электрохимической коррозии металлов являются ржавление различных металлических изделий и конструкций в атмосфере (металлических станков и оборудования заводов, стальных мостов, каркасов зданий, средств. транспорта и др.) коррозия наружной металлической обшивки судов в речной и морской воде ржавление стальных сооружений гидросооружений ржавление стальных трубопроводов в земле разрушение баков и аппаратов растворами кислот, солей и щелочей на химических и других заводах, коррозионные потери металла при кислотном травлении окалины коррозионные потери металлических деталей при нагревании их в расплавленных солях и щелочах и др.  [c.148]

С кислородной деполяризацией корродируют металлы, нахо-дяш,иеся в атмосфере (например, ржавление металлического оборудования заводов) металлы, соприкасающиеся с водой и нейтральными водными растворами солей (например, металлическая обшивка речных и морских судов, различные охладительные системы, в том числе охладительные системы доменных, мартеновских и других печей, охлаждаемые водой шейки валков блюмингов) металлы, находящиеся в грунте (например, различные трубопроводы) и др. Коррозия металлов с кислородной деполяризацией является самым распространенным коррозионным процессом.  [c.230]

Влияние коррозионной среды. Многие детали машин и приборов работают в условиях воздействия речной, грунтовой и морской вод, электролитов, газов и т. п., которые вызывают коррозию. При работе детали в коррозионной среде не существует абсолют-  [c.203]

Во всех промышленно развитых странах все большее значение приобретает проблема защиты металла от коррозии. Среди различных способов, используемых для ее решения, особое место занимают системы электрохимической (катодной) защиты, широко применяемые для предотвращения разрушения металлических сооружений, эксплуатируемых в условиях природных вод и грунтов. Область применения катодной защиты весьма широка она охватывает подземные водопроводы, газо-, нефте- и продуктопроводы и металлические трубопроводы других назначений, проложенные в земле, подземные кабели связи, силовые кабели с металлической оболочкой и броней, кабели, проложенные в трубах, заполненных сжатым газом или маслом, различные резервуары — хранилища и цистерны, речные и морские суда, портовое оборудование, установки питьевой воды и различные аппараты химической промышленности, нуждающиеся во внутренней защите.  [c.13]


При электрохимической защите от коррозии резервуаров, сосудов—ре-акторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2,3.1.2 и рис. 2.12).  [c.378]

Изучалось влияние аэробной микрофлоры в речной воде на скорость коррозии [7]. Появление нового деполяризатора — микроорганизмов — стимулирует процесс коррозии в связи с накоплением ионов Н О+ в продуктах метаболизма  [c.28]

Углеродистые стали составляют примерно 90% от общего объема производства черных металлов. По равномерной коррозии углеродистые стали не классифицируются. Скорость равномерной коррозии в нейтральных средах примерно одинакова. В атмосфере, почве, морской и речной воде при полном погружении с естественной конвекцией, т. е. в природных условиях, углеродистые стали корродируют со скоростью нескольких десятых миллиметра в год. Однако при наличии электрических контактов в условиях принудительной циркуляции воды коррозия может протекать очень быстро, и поэтому углеродистая сталь для таких систем должна иметь защиту, рассчитанную на длительное действие.  [c.29]

Свинцовые покрытия. Свинец имеет очень высокую коррозионную стойкость в атмосфере, речной и морской воде, почве и кислотах, что объясняется формированием на его поверхности сравнительно толстых, прочно связанных с металлом пленок. Скорость коррозии свинцовых покрытий незначительна.  [c.90]

Здесь нет возможности конкретно перечислить все агрессивные среды, которые вызывают межкристаллитную коррозию. Однако интересно рассмотреть отдельные среды, в которых разрушение носит специфический характер или же связано с особыми условиями. В качестве такого примера могут служить речная и дистиллированная вода, вызывающая межкристаллитную коррозию в высоколегированных сталях в при-сутствии кислорода и ионов хлора.  [c.99]

СОЛИ магния, например, способствует образованию защитных пленок из карбонатов на поверхности цинка. Поэтому в речной воде скорость коррозии цинка с течением времени уменьшается быстрее, чем в дистиллированной.  [c.113]

Избирательная коррозия наблюдается преимущественно в латунях, реже в оловянных и алюминиевых бронзах и совсем редко в медноникелевых сплавах. При этом виде коррозии конфигурация изделия сохраняется, но вместо компактного сплава остается губчатая медь. Прокорродировавшие детали теряют свои прочностные свойства. Избирательная коррозия может возникнуть в морской, речной и водопроводной воде, растворах, содержащих хлориды, и в других агрессивных растворах. Сильно разбавленные растворы хлоридов в присутствии бикарбоната натрия способны вызвать избирательную коррозию почти любых латуней, включая и латуни, содержащие алюминий, и алюминиевые бронзы.  [c.119]

Коррозионные процессы, протекающие за счет сопряженной реакции восстановления кислорода, встречаются достаточно часто. Это коррозия черных металлов в морской и речной воде и влажном воздухе, а также коррозия большинства цветных металлов в нейтральных электролитах и атмосфере. Поскольку растворимость кислорода в электролитах ничтожно мала, возможно появление концентрационной поляризации. Большинство коррозионных процессов с кислородной деполяризацией протекает в условиях, когда диффузия кислорода к катоду определяет скорость катодной реакции, а также скорость коррозии. Если доступ кислорода к катоду неограничен, например, при усиленном размешивании электролита, эффективность работы катода будет определяться скоростью протекания самой электрохимической реакции восстановления кислорода.  [c.11]


Защита металлов и металлических изделий в процессе производства, транспортирования в различных климатических условиях и длительного хранения на складах является одной из наиболее трудно решаемых задач в области противокоррозионной защиты. В процессе транспортирования, особенно при использовании морского или речного транспорта, или длительного хранения на складах без навеса металлы и металлические изделия подвергаются воздействию разнообразных факторов — влаги, кислорода, диоксида серы, пыли и др,, способствующих развитию коррозионного процесса и выходу из строя машин и приборов. При неправильном хранении и эксплуатации машин, какой бы современной и технически совершенной она ни была, машина может выйти из строя из-за разрушительного действия коррозии намного раньше требуемого срока. Следовательно, защита изделий должна быть обеспечена с момента выхода машины с производственной линии и до поступления ее к потребителю.  [c.192]

При большом разнообразии природных вод от чистых деминерализованных источников, речной и морской воды до подземных вод из геотермальных скважин с содержанием солей до 100 г/л и с температурой до 200—250 °С коррозия металлов в большинстве случаев, протекает по электрохимическому механизму с катодным процессом восстановления кислорода.  [c.29]

В пресной, речной, морской воде и во влажной атмосфере коррозия металлов происходит преимущественно с кислородной деполяризацией, причем в нейтральных и щелочных растворах ионизация кислорода идет по уравнению (1.2), а в кислых — (1.3) [1, 2, 31  [c.5]

В том случае, когда вода движется по стальным трубам, скорость коррозии постепенно снижается из-за снижения концентрации кислорода. В турбулентном потоке речной воды к поверхности стали подводится количество кислорода, достаточное для того, чтобы обеспечить пассивацию стали и уменьшить скорость коррозии.  [c.10]

На скорость коррозии стали в речной воде определяющее влияние оказывают следующие параметры [14] тип стали, химический состав, температура и pH воды, индекс насыщения, скорость потока воды, характер контакта воды с поверхностью металла. Понятно, что все эти параметры непостоянны и установить их свободное влияние во времени на коррозию трудно. Обычно содержание ионов СГ и S04", активирующих коррозионный процесс, в речной воде не выше 50 мг/л, однако в некоторых водоемах оно превышает это содержание. Коррозия стали в такой воде возрастает в 4—5 раз.  [c.16]

Все сказанное выше относится к углеродистым сталям нержавеющие стали в речных водах при температурах до 100 °С практически не подвергаются коррозии.  [c.16]

Сопротивление металлов и сплавов атмосферному воздействию и воздействию воды речной и морской часто обеспечивается образованием поверхностной защитной пленки. Например, в так называемой нержавеющей стали такая пленка образуется при наличии в стали легирующих добавок Сг, А1, Ni, Si в количестве, соответствующем образованию одной фазы. Для того чтобы пленка могла выполнять заш,итные функции, она должна удовлетворять ряду требований быть достаточно толстой и плотной и препятствовать диффузии, обладать достаточными пластичностью и прочностью, чтобы сопротивляться внешним воздействиям, и хорошим сцеплением с основным металлом. Кроме того, требования предъявляются и к самому металлу в нем не должно быть фазовых превращений, могущих вследствие изменения объема разрушить защитную пленку металл должен обладать однородностью строения, чтобы не возникло вызывающих коррозию начальных потенциалов между различными структурными составляющими.  [c.274]

Опыт эксплуатации судов морского и речного флота показал, что разрушение гребных винтов происходит в основном вследствие следующих факторов электрохимической коррозии кавитационной эрозии поломок лопастей из-за недостаточной прочности материала.  [c.15]

В ряде случаев коррозия стальных конструкций, соприкасающихся с водой, можно значительно ослабить или совсем прекратить, если применить электрохимическую защиту. Вопросам теории и практики электрохимической защиты, в частности катодной, посвящен ряд специальных руководств [111,22 111,23]. Для определения величины защитного потенциала стали в данных конкретных условиях необходимо знать скорость коррозии и величину стационарного электродного потенциала стали в этих же условиях [111,24]. В речной воде защитный потенциал для железа по нормальному водородному электроду при температуре 20° С составляет —0,65 0,70 в, при температуре 90° С он равен — 0,85 в. При этом  [c.106]

Коррозию, вызываемую микроорганизмами, называют биокоррозией. Наиболее часто она проявляется в земляном грунте, в речном или морском иле.  [c.371]

Электрохимическая коррозия сплавов практически возможна во влажном воздухе в речной и морской воде в растворах солей, кислот и щелочей.  [c.107]

Охлаждающая вода, используемая в современных электростанциях, может изменяться по чистоте от питьевой, колодезной, речной и озерной, т. е. всех относительно чистых и неагрессивных, до солоноватой воды из устьев рек, где состав меняется при отливах и приливах, и от обогащенной кислородом морской воды до промыщленных стоков, содержащих мало сульфидов. Поэтому трубы подвергаются всем типам воздействия, от коррозионного (общая, питтинговая или коррозия под напряжением) до эрозионного со стороны взвешенных частиц, или кавитации от возникающей турбулентности при входе. Кроме того, в трубы иногда попадают ракушки, которые могут поселиться там и вырасти до таких размеров, что это приведет к кавитации ниже этого места.  [c.233]


Электрохимическая коррозия развивается в металлических материалах, которые работают во влажной атмосфере, почве, речной и морской воде, водных растворах солей, щелочей и кислот.  [c.474]

Нержавеющими называются стали, обладающие высокой устойчивостью против коррозии в атмосферных условиях и некоторых газовых средах, речной и морской воде, растворах солей, щелочей и некоторых кислотах при комнатной и повышенных температурах.  [c.11]

Металлы и их сплавы являются наиболее важными современными конструкционными материалами. Всюду, где эксплуатируются металлические конструкции, есть вещества, которые, взаимодействуя с металлами, постепенно их разрушают ржавление металлических конструкций (железных кровель зданий, стальных мостов, станков и оборудования цехов) в атмосфере ржавление наружной металлической обшивки судов в речной и морской воде разрушение металлических баков и аппаратов растворами кислот, солей и щелочей на химических и других заводах ржавление стальных трубопроводов в земле окисление металлов при их нагревании и т. п. У большинства металлов в условиях их эксплуатации более устойчивым является окисленное (ионное) состояние, в которое они переходят в результате коррозии. Слово коррозия происходит от латинского orrodere , что означает разъедать .  [c.8]

Сплавы ле1 ко обрабатываются давлением (штамповка, гибка и т. д.), хорошо свариваются и обладают высокой коррозионной стойкостью. Обработка резанием в отожженном состоянии затруднена. Применяются сплавы для сварных и клепаных элементов конструкций, испытывающих сравнительно небольшие нагрузки и требующих высокого сопротивления коррозии. Так, сплавы АМц, АМг2, АМгЗ нашли применение при изготовлении емкостей для жидкости (баки для бензина), трубопроводов, палубных надстроек, морских и речных судов, в строительстве (витражи, перегородки, двери, оконные рамы и др.).  [c.332]

За сравнительно небольшой период испытаний была отмечена высокая скорость коррозии образцов из латуни Л68, установленных после конденсатора (на речной воде) и особенно после водо-водяного подогревателя и основного сетевого подогревателя. Она примерно в 4 раза превышала скорость коррозии образцов, установленных после конденсатора с ухудшенным вакуумом. Тем не менее, даже при малой потере массы образцы конденсатора с ухудшенным вакуумом имели следы обес-цинкования. Образцы, установленные после конденсатора, находились в относительно благоприятных условиях, так как их испытания были проведены после начала отопительного сезона, в период, когда концентрация железа в сетевой-воде достигала 1,5 мг/кг. Ла-тунь Л070-1 и медь имели несколько большую коррозионную стойкость, чем латунь Л68.  [c.67]

Однако использование машин, аппаратов и конструкций в различных областях промышленности связано с влиянием специфических факторов коррозии. В химическом машиностроении особую роль играет агрессивность сред. Химическая аппаратура эксплуатируется при высоких температурах и давлениях в контакте с различными кислотами, щелочами, агрессивными газами. Судостроение предъявляет особые требования к материалам в условиях контакта с морской или речной водой металлы и сплавы подвергаются различным видам локальной коррозии (особенно щелевой и контактной). Специфический фактор морской коррозии — биологическое обрастание металлических конструкций. Коррозия же металлических подземных сооружений осложняется электролитическим действием блуждающих TOKOiB различной частоты (от О до 50 гц), Атомная промышленность поставила ряд новых проблем в области коррозии и защиты металлов. Специфическим фактором коррозии оборудования, используемого в ядерной энергетике, являются высокие параметры теплоносителей, наличие нейтронных потоков, опасность наведенной радиоактивности в продуктах коррозии. Детали летательных аппаратов могут подвергаться также различным видам коррозии химической или электрохимической, в зависимости от назначения и способа эксплуатации.  [c.120]

Для районов с большим содержанием лримесей в охлаждающей воде, например для Донбасса, систематическое удаление низкотемпературных накипей из конденсаторных трубок является совершенно необходимым. В зависимости от свойств охлаждающей воды состав накипи в конденсаторных трубках может быть различным (табл. 8-2). Для речных охлаждающих вод эта накипь на 80—85% состоит из карбоната кальция, при прудовом охлаждении решающую роль начинают играть продукты коррозии, а иногда органические вещества.  [c.155]

Скорость коррозии железа можно значительно понизить, если ввести в раствор ингибиторы— замедлители коррозии. Обстоятельное исследование действия ингибиторов в нейтральных средах было проведено И. Л. Ро-зенфельдом [111-20]. Не останавливаясь детально на их применении, можно отметить, что введение в речную воду силикатов, нитритов, хроматов и бихроматов в количестве 1—2 г л практически предотвращает коррозию железа при температурах от 20 до 80° С. Для ядерной энергетики в ряде случаев желательно применять замедлители, которые бы под действием облучения не давали долгоживущие радиоактивные изотопы. Этому условию отвечает нитрит аммония. Введение его в речную воду в количестве 10 г/л уменьшает скорость коррозии углеродистой стали при температуре 90° С с 7,2 г/м сут до 0,05 г/м сут. Коррозия при этом становится равномерной. Следует, однако, отметить, что при высокой температуре нитрит аммония разлагается, и для надежной защиты стали его необходимо добавлять в воду периодически. С уменьшением концентрации ингибитора ниже определенного предела скорость коррозионного процесса увеличивается и появляются язвы [111,20]. Из результатов испытаний, проводимых в автоклавах.  [c.105]

Ускоренный метод 1и0пытания должен учитывать условия работы изделия. Процессы коррозии в атмосферах с сильными перепадами температур, которые приводят к периодической конденсации влаги, по своей природе отличаются от тех, которые развиваются, например, на конструкциях, подвергающихся периодическому смачиванию морской или речной водой.  [c.49]

В зонах, 1где металлы периодически смачиваются морской или речной водой, наблюдается самая большая коррозия. Она значительно превосходит коррозию при полном погружении в электролит [35].  [c.53]

Катодной поляризацией можно добиться снижения коррозии очень многих консфукций, работающих в условиях воздействия морской и речной воды, грунтовых вод и других коррозионных сред.  [c.55]

В систему охлаждения двигателя необходимо заливать чистую мягкую воду, лучше всего дождевую или снеговую. Совершенно недопустимо применение артезианской ключевой или морской воды. Пресную речную и озерную воду для снижения жесткости необходимо кипятить и перед заливкой в систему охлаждения фильтровать через 5 — 6 слоев марли. Использование артезианской и ключевой воды допускается только после предварительной ее обработки нонитовыми фильтрами. Воду из системы охлаждения после слива следует собирать и использовать вновь. Частая замена воды в системе охлаждения усиливает коррозию и образование накипи.  [c.51]



Смотреть страницы где упоминается термин Коррозия речной : [c.13]    [c.12]    [c.45]    [c.3]    [c.30]    [c.18]    [c.189]    [c.70]    [c.107]    [c.176]    [c.299]    [c.14]    [c.385]    [c.396]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.33 ]



ПОИСК



КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ ПОД ДЕЙСТВИЕМ РЕЧНОЙ ВОДЫ

Конденсаторные трубки коррозия в речной воде

Методы предупреждения коррозии стальных аппаратов в речной воде

Предупреждение коррозии в речной воде

Речная вода коррозия алюминия



© 2025 Mash-xxl.info Реклама на сайте