Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионное растрескивание металла сварного шва

Межкристаллитная коррозия (рис. 9) типична для коррозион-но-стойких сталей, проходит между кристаллами и поражает границы зерен. Склонность к коррозии появляется при неправильной термической обработке сталей, которые теряют прочность и вязкость. В первую очередь этот вид коррозии проявляется в виде растрескивания поверхности, а затем и полного распада. С точки зрения разрушения наиболее опасным местом сварных конструкций из аустенитных сталей является зона основного материала, прилегающая к металлу сварного шва. Так называемая ножевая коррозия напоминает по форме надрез ножом в узкой зоне на границе металла шва и основного g  [c.25]


Коррозионному растрескиванию подвергается обычно и металл сварного шва в околошовной зоне после сварки появляются растягивающие напряжения, состав н структура металла меняются.  [c.19]

При увеличении содержания азота в стали повышается склонность ее к коррозионному растрескиванию в местах концентрации напряжения. Особенно вредное влияние азота проявляется при дуговой сварке, когда он свободно проникает в металл сварного шва, и в процессе охлаждения, когда возникают внутренние напряжения, способствует образованию трещин. Для устранения этого явления рекомендуется применять электроды, содержащие присадки титана, ниобия и других стабилизаторов.  [c.92]

В основном трещины коррозионного растрескивания возникают в швах сварных конструкций, а также в конструкциях, подвергнутых деформации (штамповка, развальцовка, гибка). Есть все основания считать, что основной причиной коррозионного растрескивания сварных конструкций являются высокие внутренние растягивающие остаточные напряжения, возникающие при сварке. Местный нагрев в процессе сварки вызывает пластическую деформацию металла, что в конечном счете приводит к возникновению в зоне шва остаточных растягивающих напряжений. Кроме того, зона шва характеризуется более отрицательным значением электродного потенциала. Это способствует локализации на ней коррозионных процессов, приводящих к зарождению трещин растрескивания.  [c.45]

Коррозия ПОД напряжением возникает при комбинированном воздействии на металл постоянного растягивающего усилия и коррозионной среды н вызывает коррозионное растрескивание. Этому виду коррозии подвергаются высоколегированные хромистые стали и никель в растворах едкого натра. Растягивающие напряжения могут возникать в результате холодной обработки, например при глубокой вытяжке металла, или при сварке в зоне термического влияния на расстоянии нескольких миллиметров от сварного шва.  [c.28]

Когда сплав Ni—Си 400 сваривали по методу TIG присадочным металлом 60, сварные швы подвергались интенсивной питтинговой коррозии как в воде, так и в донных отложениях после экспозиции в течение 402 сут на глубине 760 м. Однако они корродировали равномерно после 181 сут экспозиции на поверхности. Стыковые швы сплава Ni—Си 400, сделанные ручной электросваркой в атмосфере инертных газов с использованием электрода 190, были подвержены небольшой питтинговой коррозии в морской воде и донных отложениях после 189 сут экспозиции на глубине 1800 м и язвенной коррозии сварного шва после 540 сут экспозиции на поверхности. Круговые сварные швы диаметром, 7,6 см с неснятым напряжением, сделанные в образцах сплава Ni—Си 400 ручной электросваркой в атмосфере инертных газов с использованием электрода 190, корродировали равномерно в морской воде и донных отложениях после 189 аут экспозиции на глубине 1800 м. Круговые сварные швы с неснятым напряжением применялись для определения воздействия сварочных напряжений на коррозионное растрескивание сплавов. Когда сплав Ni—Си 400 сваривался ручной электросваркой в атмосфере инертных газов с использованием электродов 130 и 180, сварные швы корродировали равномерно после 181 сут экспозиции на поверхности и 402 сут экспозиции на глубине 760 м. После 402 сут экспозиции на глубине 760 м не наблюдалось предпочтительной коррозии сварного шва, когда сплав Ni—Си 400 сваривался методом TIG с использованием электрода 167. Однако сварной шов подвергался избирательному коррозионному воздействию и был покрыт налетом меди после 403 сут экспозиции на глубине 1830 м [7].  [c.305]


Как было отмечено, коррозионная стойкость хромистых нержавеющих сталей во многих активных средах не уступает стойкости аустенитных нержавеющих сталей (при одинаковом содержании хрома). Однако недостаточная пластичность чисто хромистых сталей при обычных температурах и, особенно, хрупкость и склонность к растрескиванию сварного шва значительно ограничивали их широкое применение как коррозионностойкого конструкционного металла. Еще в 1951 г. [126] было установлено, что сплавы Сг вакуумной плавки не имеют хрупкости при комнатной температуре, если содер-  [c.160]

Массовые выходы из строя в 1960-х годах шаровых резервуаров для хранения безводного жидкого аммиака вследствие коррозионного растрескивания под напряжением сварных соединений вызвали огромный интерес к природе этого явления. Были обследованы более ста (121) резервуаров, эксплуатируемых в США, Ирландии, Финляндии и других странах. По данным магнитопорошковой дефектоскопии у 37 резервуаров имелись трещины в зонах сварных соединений, как правило, поперек сварного шва. Встречались также в зонах термического влияния и основном металле продольные трещины. Зарождались и преимущественно распространялись трещины на внутренней стенке резервуара. Трещины, возникшие в сварных соединениях, большей частью являлись межкристаллитными. Транскристаллитный характер трещин встречается значительно реже.  [c.290]

Водородное растрескивание монтажного сварного стыка газопровода диаметром 720 мм с толщиной стенки 17,2 мм, произошедшее после эксплуатации его менее месяца. Трубопровод сооружен из труб соответствующих категорий прочности материала Х46. Очаг разрушения длиной 280 мм находился на металле шва в нижней части трубы. В обе стороны от очага на металле шва наблюдался шевронный узор с выходом в зону термического влияния, в верхнюю часть трубы, где произошел пластический долом стыка. В очаге разрушения располагалась целая группа сварочных дефектов непровары, подрезы зоны сплавления, скопление глобулярных пор, микротрещины не коррозионного происхождения.  [c.19]

При эксплуатации сварных соединений в агрессивных средах наиболее опасна межкристаллитная коррозия металла шва и ЗТВ в двух ее разновидностях ножевая коррозия в ЗТВ и коррозионное растрескивание под напряжением.  [c.58]

Внутренние напряжения около сварных швов. Наличие внутренних напряжений, как известно, увеличивает склонность металла к коррозии и коррозионному растрескиванию многих материалов. Коррозионное растрескивание сварных соединений на стали описано Паркинсоном (смотри ниже). Внутренние напряжения обычно возникают около сварного шва, поэтому снятие таких напряжений необходимо всегда предусматривать. Опыт показывает, что термическая обработка, предусматриваемая для снятия напряжений, значительно, уменьшает или уничтожает склонность материала к коррозионному растрескиванию во многих случаях, где она могла бы вызвать серьезные осложнения. Однако Бойд считает, что уменьшение склонности к коррозионному растрескиванию происходит не в связи со снятием напряжений, а в связи с улучшением структуры металла [62].  [c.204]

Исследованию физических процессов в литом металле сварного шва и установлению их связи с коррозионной стойкостью сварного соединения в отечественной и зарубежной литературе посвящено много работ. Однако вопрос о процессах, протекающих в металле околошовной зоны, рассматривался недостаточно. Между тем, при правильном выборе присадочных материалов, обеспечивающих гарантированную коррозионную стойкость наплавленного металла, ответственной за работоспособность сварного соединения в агрессивных средах, особенно в сильноокислительных, зачастую оказывается именно околошовная зона, охватывающая участок металла, прилегающий ко шву. В настоящей главе основное внимание уделено изучению явлений в металле околошовной зоны некоторых типичных кислотостойких сталей. Этот участок в результате сложного термомеханического воздействия в эксплуатационных условиях часто бывает склонен к ножевой коррозии, коррозионному, а в некоторых условиях, так называемому локальному (тепловому) растрескиванию. Наибольший интерес при этом вызывают участки границ зерен, которые принято считать ответственными за межкристал-литный характер разрушения металла, в том числе в окислительных средах.  [c.80]


В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались меж-кристаллнтнпй коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия.  [c.278]

СТО сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концетраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу. Особенностью разрушений при коррозионно-механическом воздействии является наличие на изломах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др.  [c.120]

Положительные эффекты при сварке с РТЦ проявляются и по интехральным показателям сопротивления коррозионномеханическому разрушению (рис. 3.12). При фиксированном номинальном напряжении долговечность сварных соединений, выполненных с принудительным охлаждением, примерно в 2-3 раза превышает долговечность сварных соединеш1Й, выполненных с предварительным нагревом. Образцы с поперечным швом в случае сварки с подогревом (см. рис. 3.12, а -линия 1) разрушаются преимущественно по линии сплавления с характерным для коррозионного растрескивания хрупким изломом, а при сварке с охлаждением (рис. 3.12, а - линия 2) по металлу шва, и разрушение вязкое. В образцах с продольным швом (см. рис. 3.12, б) разрушение начинается с участков подкалки Чем больше (сварка с подогревом на  [c.153]

Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин  [c.17]

Разрушение монтажного сварного стыка 0720x22 мм газопровода неочищенного газа УКПГ-9-ОГПЗ имело место по истечении девяти месяцев эксплуатации. В сварном стыке были отмечены смещение кромок до 7 мм на расстоянии 2/3 периметра трубы и непровар до 10 мм в том же месте. От непровара зародилась коррозионная трещина, которая в ходе своего дальнейшего развития на 20 мм вышла на основной металл при ширине раскрытия кромок до 0,5 мм. Сероводородное растрескивание другого сварного стыка этого же газопровода (рис. 12а) также было обусловлено дефектами сварного соединения смещением кромок (более 2 мм) в сочетании с непроваром в корне шва глубиной более 2 мм на расстоянии 500 мм и порами в корневом шве.  [c.36]

При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения. При сварке встык деталей, имеющих различную толщину, возникают остаточные напряжения, которые приводят к усилению коррозии. Для уменьшения напряжений желательно уравнивание толщины свариваемых деталей на участке шва. Необходимо избегать наложения швов в высоконапряженных зонах конструкции, так как остаточные сварные напряжения, суммируясь с рабочими напряжениями, вызьшают опасность коррозионного растрескивания. Рекомендуется не деформировать металл около сварных швов, заклепок, отверстий под болты. Механическая обработка швов фрезой, резцом или абразивным кругом обеспечивает плавное сопряжение шва и основного металла и этим способствует уменьшению концентрации напряжений в соединении и повышению его коррозионно-механической прочности. Особенно эффективна механическая обработка стыковых соединений, предел выносливости которых после обработки шва растет на 40—60 %, а иногда достигает уровня предела выносливости основного металла. Стыковые соединения по сравнению с другими видами сварных соединений характеризуются минимальной концентрацией напряжений и наибольшей усталостной прочностью. Повышения усталостной проч-  [c.197]

Растрескивание металла стальных трубопроводов от водородного охрупчивания зарождается на участках с твердой мар-тенситной структурой, обычно в местах концентрации напряжений, которые возникают при изготовлении труб на металлургических заводах. Коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано чаще всего с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения коррозионных трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом в вершине поверхностного дефекта сварного соединения [38]. Исследованиями коррозионных повреждений трубопроводов из сталей 17Г2С, транспортирующих газ с примесью сероводорода до 2 %, показано, что общим для всех случаев разрушения сварных соединений является зарождение трещин на внутренней поверхности трубопровода в зоне сплавления корневого или подварочного шва и дальнейшее их распространение по металлу шва или металлу околошовной зоны до наружной поверхности. В металле труб наблюдаются внутренние и выходящие на внут-  [c.14]


Учет структурных изменений, воз-никаюш,их в металле при сварке, имеет большое значение для получения химически стойкой аппаратуры. В некоторых высокопрочных и нержавеющих сталях наблюдается часто сильное изменение структуры металла в зоне термического влияния на расстоянии 10— 15 мм от сварного шва. Эта зона имеет, как правило, пониженную коррозионную стойкость и подвергается более сильной общей коррозии. В этих местах часто наблюдается и коррозионное растрескивание. Кроме структурных изменений, в этом явлении играют определенную роль и остаточные напряжения в металле. Вообще отмечено, что даже в отсутствие структурных изменений наибольшая коррозия при сварке листов внахлестку наблюдается в зоне, лежащей между швами это, очевидно, объясняется концентрацией напряжений в этом месте. Поэтому рекомендуется там, где габариты аппарата позволяют, снимать внутренние напряжения посредством последующей термической обработки готового аппарата. При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения с целью восстановления исходной структуры и снятия внутренних напряжений. Методы и аппаратура для местного нагрева разработаны. Вопро-  [c.432]

Остатки шлаковой корки на поверхности 1ивов и в околошовной зоне после сварки должны быть тщательно удалены. Очистка пневматическим зубилом и другими способами, при которых образуются вмятины и забоины на металле шва, нежелательна Аустенитные сталп отличаются большой наклепываемостью, что должно учитываться при холодной правке сварных конструкций. Для снятия наклепа, если это необходимо во избежание, например, коррозионного растрескивания илп ускоренной коррозии в неокислительных средах, требуется нагрев ао температур не ниже 800° С ввиду повышенной прочности аустенитной стали.  [c.125]

Выбор метода сварки зависит от марки стали и назначения, и не во всех случаях получаются равнозначные механические и коррозионные свойства. При определении режимов сварки необходимо учитывать склонность основного металла и металла шва к растрескиванию, что связано с физическими свойствами и структурными изменениями, протекающими в процессе нагрева металла под сварку, процессами, протекающими во вретмя плавления и застывания литого металла, и процессами, протекающими при охлаждении в сварном металле.  [c.718]

Как было отмечено выше, сероводородное растрескивание (СР) оборудования ОНГКМ инициируется концентраторами напряжений дефекты сварных соединений (см. рис. 2.1, е 2.2, а 2.6 2.7) и технологические дефекты основного металла, резьбы (рис. 2.8, б), следы от ключей, коррозионные язвы и т.п. Результаты лабораторных испытаний сварных образцов из стали 20 также свидетельствуют о зарождении СР от дефектов (см. рис. 2.7, а), которые более чем в 10 раз снижают долговечность сварных соединений. Сопротивление СР качественных сварных соединений не ниже, чем основного металла, кроме того, за 20 лет эксплуатации сварных конструкций в металле швов в отличие от основного проката не обнаружено ни одного случая водородного расслоения. Это объясняется применением электродных материалов с низким содержанием серы, отсутствием в шве текстуры, а также тем, что условия плавления и кристаллизации шва способствуют образованию мелких сульфидных включений глобулярной формы и равномерному их распределению по литому металлу шва. В прокате из стали типа сталь 20 оборудования ОНГКМ наблюдается, особенно в срединной части стенки конструкции, значительное количество сульфидных включений дискообразной формы длиной от долей до десятков миллиметров (рис. 2.7, д). На границах раздела сульфид - матрица при охлаждении после завершения кристаллизации возможно образование микрополостей, так как коэффициент термического расширения сульфидов Ге8 - Мп8 больше, чем у ферритной матрицы (1810 К против 11,810" К" ). Металл матрицы в зоне границы раздела фаз, являясь областью объемного растяжения кристаллической решетки, может выполнять роль коллекторов для водорода. Образующийся в результате контакта стали с сероводород со держащей средой водород, попадая в эти несплошности, молизуется, вызывая водородное растрескивание (ВР) металла. Трещины ВР зарождаются внутри металла на границах раздела матрица - включение и распространяются, как правило, межкристаллитно в направлении, параллельном его поверхности при взаимодействии этих тре-щин-расслоений возникает ступенчатая магистральная тре-  [c.70]


Смотреть страницы где упоминается термин Коррозионное растрескивание металла сварного шва : [c.270]    [c.175]    [c.377]    [c.38]    [c.41]    [c.72]    [c.514]    [c.522]    [c.129]    [c.28]    [c.38]    [c.65]    [c.55]    [c.42]   
Структура коррозия металлов и сплавов (1989) -- [ c.33 ]



ПОИСК



Коррозионное растрескивани

Коррозионное растрескивание

Коррозионное растрескивание металлов

Растрескивание



© 2025 Mash-xxl.info Реклама на сайте