Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Слой, разделяющий трещину

На рис. 2.12 приведены некоторые результаты анализа микрофотографий поперечного сечения ортогонально армированного стеклопластика на различных этапах нагружения [56]. Сплошной линией отражены результаты аналитического решения. Цифрой / отмечен этап появления первой треш,ины и последуюш,его за этим деления среднего слоя на блоки. Этап II соответствует последующему делению блоков (число трещин на единицу длины возрастает вдвое). Этап III соответствует еще одному делению блоков согласно первому из названных механизмов. Число трещин на единице длины при реализации этого механизма должно еще раз удвоиться. Точками на рис. 2.12 отмечены экспериментальные результаты. Они свидетельствуют о том, что после первого разрушения слоя число трещин быстро возрастает, находясь в хорошем соответствии с результатами аналитического решения (этапы / и II), но далее остается практически постоянным. На микрофотографиях, соответствующих этому этапу нагружения, замечено разветвление трещин и выход их на границу раздела слоев, что косвенно подтверждает предсказанную расчетами возможность смены механизма развития трещин.  [c.50]


Эти трещины в виде характерных усиков, хорошо видимых на шлифах поперечного сечения шва, берут начало в месте раздела труба—подкладное кольцо у линии сплавления и, располагаясь под углом 45° к оси сварного шва, достигают протяженности 0,5—3 мм, а иногда и более. По периметру трубы (вдоль корневого слоя) корневая трещина может распространяться на несколько десятков миллиметров, охватывая иногда стык по всей окружности трубы. Наиболее опасно наличие в стыке конического подкладного кольца, которое 6 83  [c.83]

Рассмотрим подробнее феноменологическую сторону вопроса разрушения поверхности при трении. Поверхностный слой при сухом трении находится в сложно-напряженном состоянии сжатия со сдвигом. В работе [12] приводятся данные, полученные на основе изучения береговой линии частиц износа, которые показывают, что сила трения может инициировать в поверхностном слое как трещины нормального отрыва, так и трещины сдвига. Береговая линия каждой частицы образуется в результате объединения различных видов трещин. Можно предположить, что АЭ сигналы, соответствующие этим двум видам трещин, должны различаться. Это предположение основывается на результатах исследования разрушения волокнистых композитов. При этом было показано, что разрушение волокон при приложении осевой нагрузки к ним сопровождается относительно короткими сигналами АЭ, а разрушение же элементов композита, обусловленное сдвиговыми процессами (разрушение межфазовых границ раздела, вытягивание волокон из матрицы), сопровождается длинными сигналами АЭ. В нашем случае в качестве критерия относительной длины сигнала можно взять отношение двух измеряемых параметров АЭ сигнала - числа осцилляций 8 в сигнале к его максимальной амплитуде А в мВ на выходе канала усиления. Можно сделать еще одно предположение, которое заключается в том, что в первую очередь в поверхностном  [c.69]

Существует некий критический свободный объем, при котором фаница превращается в, две невзаимодействующие поверхности (это может быть двойной вакансионный слой или поры, щели и т.п.) [69]. Зависимость энергии фаниц от величины свободного объема имеет вид, представленный на рис. 64. Достижение на границах раздела структурных элементов критического значения свободного объема является чрезвычайно опасным, поскольку в этом случае формируются поры и трещины различных масштабов, приводящие впоследствии к разрушению материала.  [c.94]

Контроль прочности соединений слоев в биметаллах. Прочность соединения слоев биметаллов определяют в первую очередь по структуре граничной зоны (наличию интерметаллических фаз и трещин, толщин диффузионных слоев и т. д.). В биметаллах, изготовленных сваркой взрывом, граница раздела имеет волнистую поверхность, причем прочность соединения слоев определяется параметрами ее формы. Характеристика рассеяния  [c.287]


Детальное исследование состояния внешней поверхности, а также шлифов поверхностного слоя металла труб, работающих в поверхностях нагрева котла в условиях циклической водной очистки показывает, что поверхностные микродефекты можно разделить на две части — микродефекты в виде язв (поверхностные микродефекты, ширина которых приблизительно равна глубине или больше) и микродефекты в виде термоусталостных трещин, ширина которых существенно меньше глубины.  [c.241]

В более ранних исследованиях [1—3] было показано, что плазменное покрытие оказывает на процессы деформирования и разрушения твердых тел двойственное влияние в одном интервале температур и напряжений оно упрочняет основной материал, в другом — разупрочняет. Аналогичное воздействие, но с противоположным эффектом на основной материал оказывает диффузионный слой, образованный при дополнительной пос.ле напыления термообработке. Такое воздействие покрытия на твердое тело обусловлено динамикой дислокаций у поверхности раздела. Взаимодействие дислокаций с границей раздела определяется свойствами а) напыленного покрытия, изобилующего порами, примесями, окислами, в котором при приложении напряжений могут преждевременно зарождаться трещины, приводящие к разрушению композиций б) контактной зоны, формирующейся непосредственно при напылении покрытий и представляющей собой тонкий слой на поверхности основы в) диффузионного слоя, образовавшегося при отжиге и представляющего собой твердый раствор напыляемого материала в основе.  [c.104]

До сих пор речь шла о требованиях, которым должна удовлетворять поверхность раздела для эффективной передачи нагрузки между матрицей и волокнами. Еще одно важное требование заключается в том, что появление поверхности раздела не должно уменьшать вклад волокон в общую прочность композита. Последнее требование, вообще говоря, предусматривает неизменность собственной прочности волокон при образовании композита, хотя и допускает изменение прочности извлеченных волокон. Это кажущееся противоречие может быть разрешено, если рассмотреть различие между поведением волокон и матрицы, взаимодействующих в композите, и их индивидуальным поведением. Например, титан и бор, как показано выше, образуют истинный композит, если реакция между ними не достигает критического уровня развития. Однако извлеченные волокна бора явно разупрочнены, так как берега трещин в образовавшемся при реакции покрытии из ди-борида титана больше не поддерживаются матрицей. В то же время собственная прочность сердцевины волокна, состоящей из бора, очевидно, не меняется. Хороший пример этого рассмотрен в гл. 4, где показано, что в полностью разупрочненных композитах алюминий — бор каждое волокно бора окружено толстым слоем диборида алюминия. Прочность извлеченных волокон меньше, чем в композите однако после стравливания слоя диборида алюминия с извлеченных волокон бора их прочность примерно удваивается, практически достигая первоначального значения.  [c.26]

На чистой поверхности стекла в обычных атмосферных условиях сразу образуется мономолекулярный слой воды (гл. 3). Даже в наиболее водостойких смолах вода может проникать на поверхность раздела стекловолокно — смола путем диффузии, фильтрации через трещины или путем миграции по капиллярам вдоль волокна.  [c.209]

Между органической смолой и поверхностью гидрофобного материала, например графита, не обнаружено адгезионного взаимодействия. В этом случае вода не в состоянии участвовать в равновесном связывании компонентов на поверхности раздела и поэтому отсутствует возможность релаксации усадочных папряжений в материале. Это наиболее важно для жестких полимеров, поскольку из конструкционных материалов графит обладает наименьшим коэффициентом линейного расширения. Установлено, что уже до приложения внешней нагрузки жесткие полимеры, армированные углеродным волокном, содержат многочисленные трещины, возникшие между отдельными слоями из-за термических напряжений в материале в процессе охлаждения.  [c.216]

Процесс развития повреждений в ортогонально армированном композите на основе препрега с эпоксидной смолой детально описан в [2]. Первое проявление поврежденности под действием статического или усталостного нагружения по-прежнему состоит в расслоении у поперечных волокон. Расслоения проявляются в виде трещин, простирающихся от одной поверхности раздела слоя к другой (рис. 8). В дальнейшем расслоения развиваются вдоль поверхностей раздела слоев и среди продольных волокон.  [c.344]


Разрушению композита во многих случаях предшествует растрескивание матрицы или поверхности раздела волокно — матрица. Касательные напряжения в плоскости слоя способствуют распространению трещины в направлении армирования (трещина П рода или поперечного симметричного сдвига в соответствии с терминологией механики разрушения). Наличие растягивающих напряжений, перпендикулярных направлению армирования, ведет к раскрытию трещины (трещина I рода, или нормальный разрыв) и, наиболее вероятно, к снижению предельных напряжений Ху. С другой стороны, наличие малых или умеренных сжимающих напряжений, перпендикулярных направлению армирования, будет способствовать смыканию трещины I рода и обеспечивать фрикционное  [c.47]

Если слабыми являются поверхности раздела слоев различных направлений, возможно распространение трещин вдоль этих поверхностей, приводящее к потере несущей способности слоев, ориентированных перпендикулярно нагрул е-нию.  [c.114]

Последний случай характерен для материала, у которого слои с ориентацией 0° и поверхности раздела слоев достаточно прочны и не чувствительны к концентраторам напряжений. При этом трещины возникают только в слоях с ориентацией 90°, способных еще воспринимать нагрузку, передаваемую через поверхности раздела, причем с ростом числа трещин эта способность падает.  [c.114]

Наибольший интерес вызывает сам факт существования максимума. Появление следующей трещины с наибольшей вероятностью следует ожидать в месте расположения этого максимума. Следует заметить, что расстояние между образовавшимися таким образом трещинами больше так называемой неэффективной длины, на которой поверхности раздела слоев с ориентацией О и 90° еще передают нагрузку посредством касательных напряжений. Дальнейшее образование трещин происходит после достижения предельных напряжений между двумя близлежащими трещинами и т. д.  [c.116]

Следует отметить, что для разрушения хорошо спроектированного клеевого соехщнения пластины с весьма жесткими слоями должна быть справедлива концепция критической длины, аналогичная соответствующей концепции неэффективной длины для композитов с волокнами (см., например, [1, 49, 60, 182]). А именно, при достаточно высоком напряжении растяжения жесткие слои разделяются поперечными трещинами на отдельные участки, длина которых в направлении растяжения меньше  [c.248]

Далее, осуществлялось слежение за дефектом с наибольшей амплитудой коэффициента интенсивности напряжений и моделировалось взаимодейст вне усталостных трещин порами или трещинами на границах слоев (рис 122). Имитировалось прорастание усталостной трещины в следующий слой остановка трещины, попавшей в ловушку на границе слоев развитие тре щин в пов )хностях раздела при подходе к ним усталостных трещин,  [c.234]

Симический потенциал окислителя в районе микропустот возрастает (рис. 44), а в самой микрополости давление окислителя достигает значения, отвечающего равновесному давлению окислителя в тройной системе Me—AfeX—Xj. Происходит диссоциация наружного компактного слоя окалины на поверхности раздела окалина—трещина. Образующиеся при этом ионы металла и электроны диффундируют к внешней поверхности окалины, где они взаимодействуют с окислителем, а окислитель диффундирует через газовую фазу в микрополости к металлу и образует с ним внутренний слой окалины (рис. 45), фазовый состав которого соответствует фазовому составу первоначально образовавшегося слоя окисла.  [c.75]

Следовательно, график зависимости у от t представляет собой прямую линию (рис. 10.2). Это уравнение справедливо, когда скорость реакции на поверхности раздела постоянна, например, когда среда проникает к поверхности металла через трещины и поры в оксидной пленке. Для таких металлов обычно уИрм//гтро < 1. В особых случаях, когда скорость лимитирующей реакции постоянна как на внутренней, так и на внешней фазовой границе пленки продуктов коррозии, линейное уравнение может быть справедливо и при MpJnmpoK > 1- Например, вольфрам, окисляясь при 700—1000°С согласно параболическому уравнению, образует внешний пористый слой WO3 и внутренний плотный слой неизвестного состава [10]. Когда скорости образо-  [c.192]

Если мы можем каким-либо образом выдел1ггь из окружающего пространства часть материи, эта часть всегда имеет поверхность, благодаря которой вообще возможно произвести такое выделение. Так мы осознаем, что в окружающем мире существует множество различных тел и объектов. Но поверхность двумерна, а материя по ту и другую сторону поверхности трехмерна. Сложно себе вообразить какую-то резкую границу, на которой скачком происходит изменение мерности пространства. Скорее всего, вблизи поверхности раздела свойства трехмерного объема тела плавно изменяются и переходят в свойства двумерной поверхности. Каковы эти свойства и как происходит их изменение описано во второй части Главы 4 (разделы 4.3 - 4.4). Здесь приводится концепция поверхностного переходного слоя на границах раздела фаз, в пределах которого происходит постепенное изменение мерности от 3—>2. Показывается, что зарождение и рост трещин можно достаточно легко описать механизмом формирования дробно-размерного слоя. С этой позиции дается описание ме.ханиз-мов разрушения полнкристаллических сплавов.  [c.4]

В процессе. кристаллизации структурные элементы неизбежно взаимодействуют друг с другом посредством контакта 1раничных слоев. При этом обязательно будут образовываться участки между конденсированными центральными областями структурных элементов, на которых произошел процесс слияния мелких пор, находившихся в граничных областях соседних элементов, и образовалась несплошность. Такая несплошность остается в макрообъеме закристаллизовавшегося сплава и оказывает влияние на процессы дальнейшей эволюции при эксплуатации образца. Несплошности играют роль генераторов при образовании субмикротрещин, микротрещин и др. Экспериментально доказано, чгто микро-трещины возникают и следуют в основном 1ю границам раздела структурных элементов твердого материала [51].  [c.138]


На рис. 37 показана последовательность восьми кадров, заснятых камерой Шардина в первом испытании. Из центрального стеклянного бруска трещина распространилась в оба смежных слоя матрицы и с каждой стороны остановилась около поверхности двух ближайших стеклянных брусков. Это распространение первоначальной трещины и ее остановка показаны на рис. 38 и 39. Хотя динамическая нагрузка была достаточно высока для того, чтобы инициировать трещину, из-за малой продолжительности нагружения энергия оказалась недостаточной для дальнейшего распространения трещины. Другими факторами, способствующими остановке треихины, являются нелинейная пластическая деформация у конца трещины, вызывающая затупление трещины [39], и отражения поперечных волн напряжения, исходящих от края трещины, от границ раздела стекла и пластмассы [62]. Наличие остановившейся или почти стационарной трещины в материале, поведение которого существенно зависит от скорости изменения деформации, приводит к увеличению податливости образца, так как вблизи края трещины развиваются  [c.542]

Желательно, чтобы металл матрицы в композитах имел малую плотность и высокую пластичность как правило, такие металлы очень склонны к образованию химических соединений с высокоэффективными упрочнителями (бор, карбид кремния и т. д.). Образующиеся при этом химические соединения, часто интерметалли-пеские по природе, отличаются хрупкостью и малой эффективной фочностью. По этой причине такие соединения, образующиеся, как правило, на поверхностях раздела в процессе изготовления композита при высоких температурах, могут понизить способность поверхности раздела распределять нагрузку и сопротивляться разрушению в условиях сложного напряженного состояния. На основе этого эффекта Меткалф [44] разработал модель для объяснения снижения прочности, к которому приводит химическое взаимодействие в композитах Ti—В и AI—В. По-видимому, наличия трещин в непрочном боридном слое на поверхности раздела достаточно, чтобы вызвать преждевременное разрушение волокон  [c.46]

Разработанная Меткалфом теори-я слабых поверхностей раздела в системах третьего класса предполагает сохранение собственной (внутренней) прочности упрочнителя. Разрушение происходит при более низких напряжениях лишь в случае высокого коэффициента концентрации напряжений, обусловленного действием трещин в реакционном слое, толщина которого превышает критическую, на неповрежденное волокно.  [c.162]

Простейшие слоистые материалы состоят из связанных гомогенных изотропных пластин. При изготовлении этих материалов слабые плоскости можно располагать благоприятным образом — так, чтобы обеспечить высокую вязкость разрушения композита. Рассмотрим идеализированный слоистый материал, изображенный на рис. 25. Поле напряжений перед трещиной задается уравнением (2). На небольшом расстоянии перед вершиной трещины развиваются поперечные растягивающие напряжения 0 . Они, в сочетании со сдвиговыми напряжениями Хху (возникающими при любых зиачениях угла 0, кроме 0=0°), могут вызвать межслоевое разрушение. Маккартни и др. [24] изучали сопротивление развитию трещины слоистого материала из высокопрочной стали (203 кГ/мм ) для случаев низкой, средней и высокой прочности связи. Связь низкой прочности (3,5—7,0 кГ/мм ) обеспечивали с помощью эпоксидных смол, а также оловянного и свинцово-оловянного припоя, связь средней прочности (38—60 кГ/мм )—с помощью серебряного припоя, а высокопрочную связь (140 кГ/мм ) — путем диффузионной сварки слоев. Во всех случаях при испытании на ударную вязкость по Шарпи образцы разрушались лишь до первой плоскости соединения слоев. Остальная часть образца сильно деформировалась и расслаивалась по той же поверхности раздела, но не разрушалась. Сходные результаты получил и Эмбе-ри с сотр. [9]. Если прочность связи уступает прочности листов, то происходит торможение трещины. Ляйхтер [23], однако, установил, что охрупчивающая фаза, возникающая при использовании некоторых твердых припоев, может существенно снизить вязкость разрушения.  [c.296]

Рассмотрим сначала случай твердой хрупкой частицы в относительно вязкой матрице. На поведение композита непосредственно влияют размер частиц, их объемная доля и прочность поверхности раздела. Частица действует как концентратор напряжений. Ее размер и расстояние до соседней частицы определяют взаимодействие между полями напряжений частиц. При разрушении такого композита трещина в непрерывной фазе (матрице) будет многократно наталкиваться на частицы. Если прочность поверхности раздела между частицей и матрицей мала, то трещина будет вести себя, как при взаимодействии с порой, поскольку такая частица не способна передавать растягивающие напряжения, а радиус кривизны у нее меньше, чем у фронта трещины. В результате возможен рост вязкости разрушения. Это подтверждается данными для армированных пластиков, у которых прочность связи по поверхности раздела можно в известной степени регулировать с помощью специальной обработки поверхности упрочнителя. В работах Браутмана и Саху [4], а также Уамбаха и др. [49] было установлено, что вязкость разрушения композитов с матрицей из эпоксидной смолы, полиэфира или полифениленоксида, армированных стеклянными сферами, растет по мере снижения прочности связи по поверхности раздела. Помимо затупления вершины трещины предложены и другие механизмы, объясняющие повышение вязкости разрушения. Браутман и Саху, например, связывают его с увеличением трещинообразования и деформации в подповерхностных слоях. Для исследованных композитов изменение объемной доли стеклянных шариков по-разному влияет на вязкость разру-  [c.302]

В процессе внутреннего взаимодействия между слоями волокон может происходить расслоение [23]. В композитах с матами из случайно расположенных волокон нарушение связи может произойти в местах пересечения волокон и таким образом механически устранится взаимопроникание волокон. Для таких композитов, как бумага, которая также попадает под эту категорию, требуется построение специальной статистической геометрии, которая была рассмотрена Каллмесом, Кортом и их соавт. (библиографию можно найти в [6]). Предпринимались некоторые слабые попытки описать статистику процессов разрушения таких матов (см., например, [9]), но пока еще она недостаточно изучена, чтобы можно было понять изменчивость и масштабный эффект прочности, если последний существует для этих материалов. Вследствие неполного понимания развития процессов разрушения в таких материалах часто лучше всего вести рассмотрение на основе подхода механики разрушения, описанного Тетеяьманом [35], и исследовать статистические эффекты докритического роста трещины феноменологически, как было рассмотрено выше в данном разделе.  [c.180]

Хотя результаты первых попыток исследования распространения погранияной трещины были не вполне понятны, они позволили обнаружить наиболее простой способ непосредственного экспериментального определения энергии адгезии Дальнейшее развитие этих методов могло бы дать способ независимого определения затраченной энергии и механизма диссипации в композитах. Помимо этого существуют другие оценки прочности при разрушении адгезионных слоев, основанные на измерении вязкости распространения трепщны в полимерном клее между двумя твердыми телами. Чтобы обеспечить распространение трещины по центру связующего слоя на конечном расстоянии от границы раздела, особое внимание в таких исследованиях (например, в работах [44, 53, 63]) было уделено частным видам геометрии, толщине связующего слоя, условиям отверждения и скорости распространения трещины. Ясно, что при таких условиях происходит разрушение связующего слоя, а не границы раздела, поэтому разрушение композита следует рассматривать как разрушение полимера при наложенных механических ограничениях.  [c.260]


Идеи классической мелаиики разрушения в настоящее время используются при исследовании задач усталости для определения амплитуды интенсивности напряжений А/С в уравнении (2.5) пли скорости высвобождения энергии деформирования G. Чтобы убедиться в принципиальной пригодности для композитов эмпирического подхода в форме (2.5), нужно рассмотреть основные постулаты классической механики разрушения. Чрезвычайно важно, в частности, чтобы трещина распространялась линейно, т. е. не меняя первоначального направления. Поскольку в слоистом композите может быть несколько плоскостей слабого сопротивления (например, сдвигу или поперечному отрыву), поперечная сквозная трещина в нем будет прорастать в направлении наименьшего сопротивления. Наличие такого направления определяется матрицей (в плоскости слоя и между слоями) и поверхностью раздела волокно — матрица.  [c.86]

В Лаборатории высокотемпературной металлографии Института машиноведения разработана методика применения телевизионных анализаторов изображения типа Quantimet и РМС для исследования особенностей пластической деформации и разрушения биметаллических материалов. Использование этой методики позволило с большой точностью производить подсчет числа полос скольжения, возникающих на поверхности образцов при их нагружении, измерять длину возникшей усталостной трещины и площадь пластической деформации, развивающейся в ее вершине, а также исследовать процессы диффузии элементов через границу раздела слоев биметалла и производить измерение отпечатков ин-дентора при исследовании микротвердости [1]. Все указанные измерения проводились на образцах после их извлечения из рабочих камер испытательных установок.  [c.11]

В качестве примера на рис. 2 показан образец биметаллической композиции Ст. 3+Х18Н10Т, испытанный в криостате в среде жидкого азота. На поверхности образца видна переходная зона с остановившейся трещиной. Анализ микрофотографии, приведенной на рис. 2, показывает, что распространение трещины происходило в направлении от надреза в слое стали Ст. 3 перпендикулярно границе раздела слоев биметалла. При переходе трещины из стали Ст. 3 в сталь Х18Н10Т развивается значительная пластическая деформация, приводящая к изменению механизма разрушения. Рассматривая характер распространения трещины с позиций механики, можно предположить, что хрупкий излом сколом переходит в вязкий срезом. Энергия распространения трещины переходит в энергию пластической деформации, скорость трещины резко снижается и происходит остановка трещины.  [c.38]

Микроструктурные исследования показали, что усталостное разрушение биметаллической композиции как при комнатной температуре, так и при 800°С имеет сложный характер — в отсутствие четко выраженного деформационного микрорельефа в науглероженной зоне стали Х18Н10Т, а также в обезуглероженной зоне основного металла интенсивное дробление зерен и разрыхление поверхности сопровождаются образованием многочисленных очагов разрушения. При этом дробление происходит раньше, чем начинается развитие главной транскристаллической или межкристаллической трещины, приводящей к потере несущей способности слоя стали СтЗ. Межслойная поверхность раздела служит эффективным барьером для усталостной трещины,, так как напряженное состояние в вершине движущейся трещины резко изменяется. Магистральная трещина распространяется в плакирующем слое а при слиянии ее с трещиной материала основы образец ломается.  [c.225]


Смотреть страницы где упоминается термин Слой, разделяющий трещину : [c.85]    [c.118]    [c.573]    [c.72]    [c.106]    [c.9]    [c.332]    [c.200]    [c.291]    [c.56]    [c.95]    [c.178]    [c.242]    [c.22]    [c.390]    [c.59]    [c.59]    [c.37]   
Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.67 ]



ПОИСК



Слой раздела



© 2025 Mash-xxl.info Реклама на сайте