Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Протектор изготовление

Протекторная и катодная защита основана в наложении отрицательного потенциала на поверхность металла, при котором значительно замедляется процесс его ионизации. В протекторной защите источником поляризующего тока является гальванический элемент, состоящий из защищаемой металлической конструкции и протектора, изготовленного из специального сплава, характеристика которых приведена в табл. 3.  [c.11]


Наиболее эффективными для обеспечения противокоррозионной защиты протекторами-анодами оказались протекторы, изготовленные из сплавов 2п-А1-С(1 2n-Hg 2n Hg-Al. Успешно используются также протекторы из алюминия, магния и их сплавов, например сплавы А1-8п (0,5%) и Ag-2n, однако протекторы из цинко-алюминиевых сплавов, например из сплава 2п-А1 (0,27 %) -СО (0,03 %), обычно очень чувствительны к действию температуры — при повышении температуры от 25 до 70 °С протектор разрушается. Это связано с тем, что в сплаве на границах кристаллитов существует фаза, богатая алюминием, которая в условиях поляризации растворяется в воде при 70 °С значительно быстрее цинковой основы, чего не наблюдается при 25 °С вследствие различной температурной зависимости скорости растворения цинка и алюминия в морской воде. Для предотвращения разрушения протектора уменьшают содержание  [c.96]

Результаты промышленных испытаний протекторов, изготовленных из технического магния, магниевого сплава Мл-4, сплава алюминия с 5% цинка приведены в табл. 3-28.  [c.217]

Электрохимическая защита подземных трубопроводов может быть осуществлена в двух вариантах применением внешних источников постоянного тока (установки катодной защиты с выпрямителями, генераторами постоянного тока, химическими элементами МОЭ-1000 и т. п.) и внутренних источников — протекторов. При присоединении к трубопроводу протектора, изготовленного из металла с более отрицательным электродным потенциалом по отношению к стали, образуется гальванический элемент.  [c.166]

Достаточные сведения об оптимальном содержании легирующих элементов в цинке также отсутствуют. Известно применение протекторов, изготовленных из сплавов на основе цинка, содержащих 0,1 /о А1, (0,025—0,07) % Сс1 [6]. При этом железа в сплавах допускается не более 0,0014% [6], 0,005%, 0,02%. Рекомендуются также сплавы цинка с 0,3% А1, 0,05% Сё и <0,003% Ре, или 0,3% А1, 0,05% Сё, 0,1% 81 и <0,006% Ре с 0,5% А1, 0,5% 81 и <0,002% Ре с (0,25—0,75) /о А , (0,05—0,2%) Сс1 и 0,185 или >2,0)% 81 с 1,0% А1 с 1% А1 и <0,02% Ре [4, 7].  [c.23]

Наиболее просто осуществить катодную защиту, присоединив к стальной конструкции протектор, изготовленный из металла, имеющего более электроотрицательный потенциал по отношению к стали. Благодаря разности  [c.257]

В нашей стране для защиты подземных трубопроводов широко применяются магниевые протекторы. Если в 1951 г. действовала лишь одна опытно-промышленная установка (100 протекторов) на газопроводе Саратов—Москва [1 ], то в 1961 г. на различных газопроводах было установлено около 25 ООО протекторов [2], а к концу 1965 г. в эксплуатации будет примерно 50 ООО протекторов, изготовленных из магниевых сплавов.  [c.302]


Защита протекторами состоит в том, что к защищаемому сплаву присоединяют протектор, изготовленный из металла, имеющего отрицательный потенциал, т. е. являющийся анодом по отношению к данному сплаву. Таким образом, в процессе коррозии будет разрушаться не основной металл, а материал протектора.  [c.295]

Протектор 3 ПЭП должен обладать высокой износоустойчивостью, обеспечить высокую чувствительность преобразователя и стабильность акустического контакта его с изделием. Протектор, изготовленный из металла или керамики, хорошо удовлетворяет лишь первым двум из указанных условий, а из материала с повышенным затуханием ультразвука — эпоксидной смолы с металлическим (предпочтительно бериллиевым) наполнителем или из пластика (полиуретана) — повышает стабильность акустического контакта, однако износостойкость такого протектора ниже, чем металлокерамического. Протектор делают тонким (0,2...0,5 от Я), чтобы ускорить гашение многократных отражений в нем ультразвука.  [c.101]

ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда  [c.218]

Корпус конденсатора изготовлен из листовой стали, водяные камеры — из высокопрочного чугуна, трубные доски —из латуни, трубки — из мельхиора, пластины протекторов — из цинкового сплава.  [c.53]

Цинк тоже применялся для катодной защиты уже в 1824 г. (см. раздел 1.3). Так называемый котельный цинк, первоначально примененный для защиты стальных судов, оказался непригодным, поскольку он покрывался твердым слоем и становился пассивным. При использовании высокочистого цинка такой пассивации не происходит. Цинк в такой форме является самым удобным из всех материалов протекторов [5,]. Чистый цинк (чистотой 99,995 %), содержащий менее 0,0014% железа, пригоден как материал для изготовления протекторов без дополнительных добавок. Такой цинк регламентируется стандартом военного ведомства США MIL—А—18.001 А и допущен в военно-морском флоте ФРГ [6)]. Важнейшие свойства чистого цинка приведены в табл. 7.1.  [c.179]

Протекторы из чистого цинка обычно бывают очень крупнозернистыми и имеют структуру столбчатых дендритов (рис. 7.3). Это ведет к неравномерной коррозии (потере массы металла) протектора. Кроме того, при изготовлении таких протекторов необходимо следить за тем, чтобы низкое содержание железа в исходных материалах сохранялось и при переработке. По новейшим техническим условиям к цинку добавляют до 0,15 %) d и 0,5 % А1 [6, 7]. Благодаря этим легирующим элементам не только достигается значительное измельчение зерна (см.  [c.179]

ПРИМЕНЯЕМЫХ ДЛЯ ИЗГОТОВЛЕНИЯ ПРОТЕКТОРОВ  [c.180]

Скорость собственной коррозии алюминиевых протекторных сплавов и ее зависимость от токовой нагрузки и от среды колеблется в соответствии с типом легирования и химическим составом в широких пределах и всегда более высока, чем у цинковых протекторов. Кроме того, материал протектора в области литейной корки может вести себя совершенно иначе, чем в сердцевине. В особенности это относится к протекторам, содержащим олово, если температурный режим при их изготовлении не был оптимальным. У некоторых алюминиевых сплавов потенциал с течением службы становится более отрицательным, причем установившиеся значения достигаются только спустя несколько часов или даже суток. Напротив, у протекторных сплавов, содержащих  [c.183]


Наибольшей унификации подверглись формы протекторов для танкеров. Здесь применяются длинномерные (вытянутые) протекторы с проходящим насквозь круглым чугунным сердечником. По соображениям изготовления поперечные сечения таких протекторов принимают полукруглыми, почти прямоугольными, трапецеидальными, а иногда и треугольны- от ми (рис. 7.14). Лапки или сами отогну- ГГ Т тые сердечники предназначаются для  [c.193]

Химический состав, материал для изготовления, размеры и применение протекторов были рассмотрены в разделе 7. На сооружениях для района прибрежного шельфа протекторы размещают уже на верфи при их изготовлении. При ремонте на месте протекторы могут быть закреплены водолазами при помощи скоб (рис. 17.3, а). При таком способе за-  [c.340]

Катодная защита резервуаров с горячей водой, изготовленных из коррозионностойкой (нержавеющей) стали, в принципе тоже возможна. Она целесообразна в первую очередь в тех случаях, когда требования DIN 50930 [3] в отношении свойств материала и содержания ионов хлора в воде не выдерживаются. При использовании магниевых протекторов с изолированной проводкой можно отрегулировать ток промежуточным включением сопротивлений до требуемой малой величины защитного тока, обеспечивающей предотвращение язвенной коррозии. Поскольку защитный потенциал высоколегированных хромоникелевых сталей согласно разделу 2.4 составляет примерно 0н=0,0 В, в качестве протекторов могут быть применены также алюминий, цинк и железо, так как даже и при пассивации этих материалов движущее напряжение остается достаточно большим.  [c.402]

Для изготовления протекторов применяются главным образом магний, алюминий, цинк (табл. 73). На основе этих металлов готовят магниевые, алюминиевые и цинковые сплавы. В качестве активатора для магниевых и цинковых протекторов широко используется смесь сернокислых солей магния или натрия с сернокислым кальцием и глиной. Состав активаторов дан в табл. 74.  [c.141]

Изготовленные из сплава магния Мг 95-1 пи протяженные протекторы, отличающиеся малой массой на единицу поверхности, резко расширяют область применения протекторов, которая раньше ограничивалась удельным сопротивлением грунта до 50 Ом м. Протяженные протекторы типа ПМП 35 х 10, ПМП 20 х 10 представляют собой полосу, намотанную на барабан. Протяженные протекторы, сматываемые с барабана, можно укладывать в одну траншею вместе с трубопроводом или на некотором расстоянии от него [16].  [c.82]

Для защиты от коррозии внутренней поверхности резервуаров используют протекторы типа ПМР, изготовленные из сплава Мл-4 (табл. 19).  [c.91]

В качестве материалов протекторов используют сплавы магния-с алюминием, цинком и марганцем алюминия с цинком, магнием, марганцем цинка с алюминием. Основная цель легирования — получение устойчивых электрохимических характеристик, высокой токо-отдачи и технологичности при изготовлении и установке протекторов. Важное значение имеет отсутствие вредных примесей, вызывающих пассивацию или повыщенное саморастворение протектора. Состав и свойства протекторных сплавов регламентированы нормативной документацией, так же как размеры протекторов, правила их установки для конкретных изделий.  [c.143]

Шины [В 60 С сплошные (ненадувные) 7/00-7/28 средства для указания степени изнашивания 11/24 форма шинного протектора 11/03-11/12) В 29 вулканизация С 35/00 изготовление сердечников или бортовых колец D 30/(48-50) массивные резиновые, изготовление D 30/02) резиновые (L 30 00 изготовление D 30/(06-72) ремонт С 73/00, D 30/00) пневматические G 01 измерение давления внутри шин L 17/00 испытание эксплуатационных свойств М 17/02) модификации для колес летательных аппаратов В 64 С 25/36 обратные клапаны для накачивания F 16 К 15/20 приспособления (для движения транс-  [c.212]

Корпус опреснителя литой чугунный, изготовлен из двух половин с горизонтальным разъемом. Крышки конденсатора и испарителя снабжены цинковыми протекторами. Трубки конденсатора и испарителя прямые с наружным диаметром 16 мм. В конденсаторе расположено 670 трубок, в испарителе 186. Плотное расположение трубок в испарителе предопределяет необходимость химической очистки их наружной поверхности от накипи, которая должна производиться через шесть месяцев. Опыт эксплуатации этих испарителей показал, однако, что при работе с полной нагрузкой необходимость в очистке возникает через четыре месяца.  [c.210]

Покрышки (рис. 162) состоят из каркаса, беговой дорожки (протектора), боковой и бортовой частей. Каркас изготовлен из нескольких слоев ткани (корд) с резиновыми прослойками между ними. В обычных покрышках нити корда расположены под  [c.246]

Поврежденную шину необходимо снять и тщательно проверить. Застрявшие гвозди и другие предметы нужно удалить. При больших пробоинах в покрышке необходимо изнутри поставить манжету, изготовленную из двух-трех слоев куска каркаса утильной покрышки или из куска ободной ленты. Поврежденную покрышку нужно по возвращении в гараж сдать в ремонт. Для восстановления протектора принимают шины, не имеющие расслоения каркаса и сквозных пробоин. Для обнаружения небольших проколов камеры ее накачивают воздухом и погружают в воду.  [c.256]

Изготовление и шприцевание протекторной резиновой смеси в условиях, исключающих начало преждевременной вулканизации, требует, чтобы величина индукционного периода смеси при 120°С составляла 25—30 мин. К этому времени необходимо прибавить еще около 15 мин — время, которое соответствует индукционному периоду 0,5—1 мин при температуре вулканизации (обычно температура вулканизации покрышек 160—180 °С), необходимому для формирования покрышки и рисунка протектора. Следовательно, индукционный период резиновой смеси при 120 °С должен составлять не менее 45 мин.  [c.52]

Свойства протектора определяются составом сплава, массой и формой, способом изготовления, электрохимическим эквивалентом, составом активатора, коэффициентом использования, стационарным потенциалом в грунте и т.д.  [c.76]

Почти в 90 % случаев автомобильное колесо имеет оба вида дисбаланса. Их причинами может быть некачественная сборка конструктивных элементов шины при изготовлении, неправильный монтаж, а также неравномерный износ протектора в эксплуатации.  [c.211]


Как известно, для защиты металла от коррозии при отсутствии напряжений успешно применяется электрохимическая защита. Она производится с помощью протектора, изготовленного из значительно менее благородного металла, т. е. имеющего значительно более отрицательный электродный потенциал, чем металл защищаемого объекта или анодных покрытий (см. VI—8), или при помощи катодной поляризации защищаемого объекта от внешнего источника тока. Благодаря электрохимической защите местные коррозионные пары на металле должны перестать работать и весь защищаемый объект должен сделаться катодным. Основы электрохимической защиты разработаны и описаны Г. В. Акимовым [1, 2] и Н. Д. Томашевым [151].  [c.179]

Сплав AZ63 применяют преимущественно для изготовления литых протекторов, а из сплавов AZ31 и М2 получают главным образом протекторы в виде прессованных стержней (прутков). Состав сплавов и требования к их чистоте у отдельных изготовителей несколько различаются. Показатели сплава AZ63, представленные выше, превышают требуемые по стандарту MIL-A-21412 А.  [c.186]

Правильно сконструированные и хорошо изготовленные протекторы могут работать до полного почти израсходования используемого протекторного сплава. У протекторов худшего качества большая или меньшая часть материала может во время службы отвалиться и поэтому перестанет давать эффект катодной защиты. По этим же соображениям необходимо обеспечить хорошее сцепление между протекторным сплавом и сердечником (держателем). Согласно техническим условиям 07], сцепление должно распространяться не менее чем на 30 % площади контакта. У высококачественных протекторов этот процент значительно выше, потому что между протекторным сплавом и держателем образуется промежуточный сплавленный слой. Чтобы облегчить формирование такого слоя, держатель должен быть тщательно очищен. Органические загрязнения удаляют в соответствующей ванне (растворителем РЗ). Ржавчину растворяют в солянокислотной травильной ванне. После промывки и сушки держатель приобретает светлую (неокисленную) металлическую поверхность и его можно сразу же заливать протекторным сплавом. Светлую поверхность держателей можно получать также дробеструйной очисткой до класса чистоты по стандарту Sa 2V2 [27] и затем сразу же заливать ее сплавом.  [c.190]

Сообщалось также и о так называемых многослойных протекторах из различных протекторных материалов [31]. Такие протекторы должны вначале давать ток большой силы для предварительной поляризации, а затем в течение длительного времени работать с малым током при возможно большей токоотдаче (в ампер-часах). Когда такие протекторы имеют наружную оболочку из магниевого сплава и сердечник из цинка, температура плавления сердечника оказывается более низкой, чем у материала оболочки. Это соответственно усложняет технологический процесс изготовления. Однако та же цель может быть достигнута и проще при сочетании протекторов из различных материалов [132], например при использовании магниевых протекторов для предварительной поляризации и цинковых или алюминиевых протекторов для длительной защиты.  [c.195]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк, -не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла.  [c.79]

При измерениях, с язанных с оценкой качества машин в эксплуатации, необходимо иметь в виду, что процесс эксплуатации сопровождается постепенным ухудшением показателей качества, полученных при ее разработке и изготовлении. Так, снижается мощность и увеличивается расход топлива двигателями внутреннего сгорания, снижается точность обработки на металлорежущих стенках, уменьшается коэффициент бегущей волны антеннофидерных устройств, ухудшается яркость свечения кинескопов, истирается протектор шин.  [c.149]

Материалы для ремонта шин. По ГОСТу 2631—60 выпускают для ремонта горячей вулканизацией следующие материалы а) протекторную ленту для замены протектора по полному профилю б) протекторную резину для заполнения поврежденных участков протектора в) прослоечную листовую резину для заполнения поврежденных участков шин г) герметизирующую листовую резину для ремонта бескамерных шин д) камерную листовую резину для ремонта камер е) камерную листовую резину — брикетную для ремонта камер в путевых условиях ж) теплостойкую листовую резину для изготовления варочных мешков з) клеевую резину для изготовления вулканизирующего клея.  [c.253]

Формование комбинации с литьем В 22 D 47/02 В 29 D невулканизироватнях протекторов на изношенных шинах 30/(52—68) полых изделий из пластических материалов 22/00) постелей в землю В 22 D 3/02) Формовочные В 22 С машины для изготовления литейных форм или сгерж-  [c.203]

В производстве резиновых изделий широко применяются схемы с использованием валковых и червячных машин. В поточноавтоматической линии изготовления заготовок протекторов применены червячные машины в сочетании с каландром. В последние годы для производства листовых материалов большой толщины используют установки, состоящие из червячных машин холодного питания и двухвалковых каландров различных типоразмеров.  [c.129]


Смотреть страницы где упоминается термин Протектор изготовление : [c.156]    [c.109]    [c.68]    [c.206]    [c.396]    [c.191]    [c.402]    [c.121]    [c.287]    [c.65]    [c.154]   
Оборудование для изготовления пневматических шин (1982) -- [ c.59 ]



ПОИСК



Изготовление протекторов методом дублирования

Материалы для изготовления протекторов

Оборудование для изготовления протекторов

Протекторы



© 2025 Mash-xxl.info Реклама на сайте