Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Объект геометрической модели

Оболочка из композита 372 металлическая 416 Объект геометрической модели 64 данных 64 вспомогательный 65  [c.538]

Условия подобия являются основой научно поставленного эксперимента. Они позволяют моделировать процесс или явление, т. е. проводить опыт не с натуральным объектом — активной зоной ядерного реактора, а с его геометрической моделью с тепловыделяющими элементами, нагреваемыми другими источниками энергии.  [c.47]


Геометрическое моделирование включает решение позиционных и метрических задач на основе преобразования геометрических моделей. Элементарными геометрическими объектами в ММ являются точка, прямая, окружность, плоскость, кривая второго порядка, цилиндр, шар, пространственная кривая и т. д.  [c.7]

При геометрическом проектировании геометрические модели применяются для описания геометрических свойств объекта конструирования (формы, расположения в пространстве) решения геометрических задач (позиционных и метрических) преобразования формы и положения геометрических объектов ввода графической информации оформления конструкторской документации.  [c.37]

Аналитические модели служат основой для описания элементарных геометрических объектов (ЭГО), на основе которых могут быть получены составные геометрические объекты. Таким образом, каждый участок составной геометрической модели или контура описывается своим уравнением, а описание общей модели становится кусочно-аналитическим.  [c.38]

Канонические геометрические модели применяют в тех случаях, когда в геометрических объектах удается выделить параметры, которые однозначно определяют их форму. Например, для окружности такими параметрами являются координаты центра и радиус окружности.  [c.39]

Рецепторные геометрические модели в своей основе имеют приближенное представление геометрического объекта в плоскости или пространстве рецепторов. В области рецепторов строится прямоугольная решетка или сеть. Каждая клетка сети или решетки рассматривается как отдельный рецептор, который может иметь состояние О или 1. Рецептор считается возбужден-  [c.39]

Каркасные геометрические модели используют при описании поверхности в прикладной геометрии. При этом одним из основных понятий является понятие определителя поверхности. Определитель поверхности включает совокупность условий, задающих поверхность. Определитель поверхности состоит из геометрической и алгоритмической частей. В геометрическую часть входят геометрические объекты, а также параметры формы и положения алгоритмическая часть задается правилами построения точек и линий поверхности при непрерывно меняющихся параметрах геометрической модели. Для воспроизведения геометрических моделей на станках с ЧПУ, на чертежных автоматах или на ЭВМ их приходится задавать в дискретном виде. Дискретное множество значений параметров определяет дискретное множество линий поверхности, которое в свою очередь называется дискретным каркасом поверхности. Для получения непрерывного каркаса из дискретного необходимо произвести аппроксимацию поверхности. Непрерывные каркасы могут быть получены перемещением в пространстве плоской или пространственной линии. Такие геометрические модели называются кинематическими.  [c.40]


Произведено сравнение результатов обучения по изложенной методике с контрольной группой, учебный процесс в которой был целиком построен на изображении объектов, задаваемых в виде натурных образцов. В качестве последних использовались геометрические модели многогранников и детали машиностроительных конструкций. В сравниваемых группах была обеспечена идентичность методических средств формирования ориентировочной основы действий. В контрольной группе новые действия включались в структуру уже сформированных, как и в основной группе. Достигалось это за счет требования схематизации первых графических работ, которые напоминали чертежи. Только в последующих работах изобразительная сторона эскиза постепенно усложнялась за счет полноты операционного состава деятельности.  [c.101]

Подробно описываются аппарат объектной привязки координат и способы построения двухмерных геометрических объектов. Особое внимание уделено приемам штриховки и простановке размеров, инструментам редактирования рисунков. Рассказывается о средствах формирования трехмерных твердотельных объектов, их редактировании и визуализации. Рассмотрена технология разработки параметрически управляемой геометрической модели.  [c.136]

Построение и коррекция геометрической модели объекта производятся на различных этапах проектирования. В этих условиях проектировщику необходим внешний накопитель информации, адекватно отражающий геометрическую модель. Таким накопителем выступают на различных этапах набросок, эскиз или чертеж [1]. При этом графические изображения играют тройную роль во-первых, они используются как объект активной творческой работы конструктора, во-вторых, находясь в памяти ЭВМ, могут быть применены в качестве входных данных для других этапов проектирования и, в-третьих, графические изображения составляют основную часть конструкторских документов. Поэтому целесообразно более подробно рассмотреть вопросы построения геометрических моделей ЭМУ.  [c.177]

В процессе автоматизированного конструирования пользователи оперируют с различными геометрическими моделями проектируемых объектов, которые различаются степенью детализации, способами описания и представления в памяти ЭВМ и на внешних устройствах. Геометрическая модель представляет собой математическое описание объекта (как правило, в трехмерном пространстве), определенное в терминах аналитической геометрии или при помощи некоторой структуры данных и соответствующих алгоритмов получения изображений. Эти модели отражаются на графических дисплеях или графопостроителях в виде графических изображений на плоскости.  [c.177]

Конструирование ЭМУ наряду с формированием и преобразованием геометрической модели проектируемого объекта связано с проведением различного рода расчетных работ. Рассмотрим особенности этих работ и основные алгоритмы их выполнения в условиях функционирования САПР.  [c.187]

Объект 2 (модель), геометрические параметры которого удовлетворяют условию (5-86), назовем геометрически подобным объекту I. Иначе можно сказать, что два гидродинамических объекта будут геометрически подобными, если любой линейный размер одного может быть получен из линейного размера другого путем умножения на постоянный множитель.  [c.127]

Прикладной компонент - модель объекта, часто используемая в ряде интегрированных ресурсов и прикладных протоколов, например, геометрическая модель поверхности  [c.313]

Модель должна быть наглядной, т. е., если это необходимо, давать наглядное представление о пространственном расположении объектов, геометрической форме объектов и т. п.  [c.16]

Выше было показано, что в ходе конструирования выделяется геометрическая информация. С ее помощью создается геометрическая модель ГМ, которая отображается в изображение либо комплекс изображений — технический чертеж. Поскольку мы рассматриваем процесс конструирования с позиций геометрии и графики, то объекты конструирования либо их части будем называть фигурами.  [c.28]

В общем случае полная геометрическая модель среды сложна, и обработка содержащейся в ней информации в реальном времени затруднительна. Поэтому для построения безопасного маршрута движения шасси робота используется упрощенная плоская модель, представляющая собой проекцию всех объектов, окружающих робот, на опорную плоскость. При автоматическом программировании движений бортового манипулятора приходится учитывать пространственную модель препятствий с целью обеспечения возможности их обхода.  [c.211]


Геометрические модели представляют собой уменьшенные или увеличенные детали конструкции, собранные в отдельный узел или механизм. Эти модели предназначены для демонстрации пли специального воспроизведения функционирования элементов механизма и машины в целом. Они дают наглядное представление об устройстве механизма и его ра боте. Геометрические модели, как правило, не предназначаются для получения количественных результатов. Их основное назначение— показать принцип действия, взаимное расположение частей, процесс сборки и разборки, компоновку объекта.  [c.192]

В главе 4 рассмотрены обширные функции создания и модификации геометрических моделей объектов.  [c.15]

В свою очередь, математические модели могут быть геометрическими, топологическими, динамическими, логическими и т. п., если они отражают соответствующие свойства объектов. Наряду с математическими моделями при проектировании используют рассматриваемые ниже функциональные ШЕРО-модели, информационные модели в виде диаграмм сущность - отношение, геометрические модели-чертежи. В дальнейшем, если нет специальной оговорки, под словом модель будем подразумевать математическую модель (МО).  [c.20]

Исходные данные для препроцессора — геометрическая модель объекта, чаще всего получаемая из подсистемы конструирования. Основная функция препроцессора — представление исследуемой среды (детали) в сеточном ввде, т. е. в виде множества конечных элементов.  [c.218]

Традиционные методы геометрии, широко используемые в естественных науках, в том числе в материаловедении и механике деформируемых тел, основаны на приближенной аппроксимации структуры исследуемого объекта геометрическими фигурами, например линиями, отрезками, плоскостями, многоугольниками, многогранниками, сферами, метрическая и топологическая размерности которых равны между собой. При этом внутренняя структура исследуемого объекта, как правило, игнорируется, а процессы образования структур и их взаимодействия между собой и с окружающей средой характеризуются интегральными термодинамическими параметрами. Это, естественно, приводит к утрате значительной части информации о свойствах и поведении исследуемых систем, которые, в сущности, заменяются более или менее адекватными моделями. В некоторых случаях такая замена вполне оправданна. В то же время известны ситуации, когда использование топологически неэквивалентных моделей принципиально недопустимо. В частности, при изучении сложных динамических систем необходимо учитывать особенности топологии как тонкой структуры объектов, так и фазовых траекторий системы. Дробная метрическая размерность таких объектов не только характеризует их геометрический образ, но и отражает процессы их образования и эволюции, а также определяет динамические свойства.  [c.33]

Геометрическая модель — совокупность сведений, однозначно определяющих форму геометрического объекта. Геометрические модели могут быть представлены совокупностью уравнений линий и поверхностей, алгебрологическими соотношениями, графами, списками, таблицами, описаниями на специальных графических языках. Теоретической основой создания геометрических моделей являются аналитическая геометрия, теория множеств, дифференциальная геометрия, теория графов, алгебра логики.  [c.37]

Геометрические модели. В алгоритмах геометрического проектирования фигурируют геометрические объекты, являющиеся исходными данными, промежуточными и окончательными результатами конструирования. Детали и узлы конструкции имеют самые разнообразные геометрические характеристики. Например, поверхность детали характеризуется микрогеометрией (шерохова-тостькз поверхности, отклонением формы, размеров) и  [c.36]

Алгебрологические геометрические модели обеспечивают задание плоских фигур и трехмерных тел, в которых геометрический объект описывается логической функцией условий, выражающих принадлежность точки тем или иным пространственным областям. Пусть области D —D4 на плоскости хОу определены с помощью неравенств следующим образом  [c.38]

После проведенного теоретического анализа в пространственном эскизировании был отклонен традиционный путь построения изображения по задаиной модели (машиностроительной детали), по крайней мере,- на первых занятиях. Вначале нам казалось, что возможность выявления всех геометрических и оптико-физических свойств с помощью натурного образца соответствует требоваиию первого материального этапа освоения действия. Но на практике мы столкнулись с фактом неразвитости у студентов информационнообразной стороны визуального восприятия объекта. Студенты создают структурный эквивалент модели иа основе чувственных представлений об окружающем предметном мире. Даже при заданной ориентировочной основе действия студент оказывается неспособным выделить опорные элементы восприятия структуры формы, так как не владеет еще навыками визуального анализа самих объектов изображения. Модель в этом случае материализует не те свойства, которые необходимы студенту для правильной ориентации в существе вопросов пространственного формообразования.  [c.98]

Давая обобщенную характеристику типовых расчетных задач, рещае-мых в конструировании ЭМУ, следует отметить, что большинство этих задач (за исключением тепловых, деформационных расчетов и проектных расчетов размерных цепей) имеют достаточно простые алгоритмы решения и могут быть выполнены на ЭВМ с малыми затратами времени. Значительная часть конструкторских расчетов носит характер проверок проектных решений, принимаемых на предыдущих этапах проектирования. Поэтому целесообразно обеспечить конструктора оперативными расчетными данными непосредственно в процессе его работы с геометрическими моделями проектируемых объектов.  [c.189]

Очевидно, что для геометрически и кинематически подобных течений безразмерные уравнения движения (58) будут одинаковыми в том случае, если каждый из этих комплексов имеет одно и то же значение для натурного объекта и модели и если в сходственных точках этих потоков относительные значения плотности и значения вязкости одинаковы (р/р = idem,  [c.78]


История создания твердого тела содержит граничное представление всех конструктивных элементов, параметры и названия всех использованных объектов. Выделение самостоятельных геометрических моделей конструктивных элементов производится копированием прямо из истории создания. Это дает возможность быстрого доступа в любых моделях сложных тел, к любым промежуточным результатам и использования их при построении новых тел, а также позволяет организовать коллективный доступ к результатам работы многих конструкторов в едином проекте, не создавая дополнительных (резервных) ко1шй всех конструктивных элементов. Кроме самой геометрии в истории создания хранится описание каждой операции в хронологическом порядке их выполнения, которые можно редактировать прямо в дереве истории создания.  [c.24]

На поверхности металлических сооружений большой протяженности, находящихся в коррозионноактивной среде, создаются возможности для образования коррозионных макроэлементов значительной мощности. Одним из наиболее важных и распространенных видов таких сооружений являются трубопроводы различного назначения коммуникационные магистрали (часто подземные или подводные), технологические лийии на промышленных предприятиях, теплообменная аппаратура и т. п. Поэтому в качестве объекта для исследования макроэлектрохимической гетерогенности используем геометрическую модель протяженного сооружения, обладающую цилиндрической симметрией.  [c.210]

Для автоматического распознавания объектов и анализа обстановки вблизи робота разработаны два метода. Первый метод основывается на вычислении признаков видимых объектов, инвариантных по отношению к преобразованиям их изображения, связанным с изменением ракурса восприятия и проектированием трехмерных объектов на плоскость изображения. Этот метод получил название метода инвариантного распознавания [38, 116]. В основе второго метода лежат алгоритмы логического описания классов распознаваемых объектов (режим обучения) с последующим логическим анализом изображения реальной обстановки (режим принятия решений). Описание этого логикоаксиоматического метода распознавания содержится в работах [9, 108, 119, 123]. Результаты распознавания используются для целеуказания объектов, подлежащих манипулированию или транспортировке, а также для уточнения геометрической модели окружающей робота среды. При построении модели среды (в частности, модели препятствий) существенно используется также информация от ультразвуковых датчиков ближнего и дальнего действия.  [c.211]

Пакет программ SPA E — это совокупность программных средств, обеспечивающих решение задач по формированию и обработке на ЭВМ геометрических моделей трехмерных объектов. Он ориентирован на использование в рамках систем автоматизации научно-исследовательских и проектно-конструкторских работ при решении задач описания, хранения, обработки, визуализации и расчета характеристик трехмерных объектов сложной геометрии.  [c.148]

Команды этой секции меню предназначены для создания реальной конечно-элементной сетки на геометрических моделях, импортированных в виде STL-файлов. Результатом импорта геометрии из этих файлов будет конечно-элементная модель, состоящая из элементов Plot Planar. Размер данных элементов определяется геометрией объекта, поэтому обычно требуется измельчение сетки.  [c.275]

Построение математической модели. Начальным шагом по созданию математической модели геометрического объекта (профиль или поверхность) в рамках задачи интерполяции является его оцифровывание или сколка, т. е. снятие данных (координат точек) на различных его сечениях. Оцифровьшание объекта контроля проводится с помощью специального контрольно-измерительного оборудования, координатно-измерительных машин (КИМ), лазерного устройства. Процесс снятия данных , как правило, упорядочен. Для построения качественной математической геометрической модели конструкции данные скалываются по сечениям в определенном порядке.  [c.188]

К важным характеристикам AD-систем относятся параметризация и ассоциативность. Параметризация подразумевает использование геометрических моделей в параметрической форме, т. е. при представлении части или всех параметров объекта не константами, а переменными. Параметрическая модель, находящаяся в базе данных, легко адаптируется к разным конкретным реализациям и потому может использоваться во многих конкретньпс проектах. При этом появляется возможность включения параметрической модели детали в модель сборочного узла с автоматическим определением размеров детали, диктуемых пространственными ограничениями. Эти ограничения в виде математических зависимостей между частью параметров сборки отражают ассоциативность моделей.  [c.217]

При моделировании процессов циклического нагружения применяют два вида моделей реальных объектов геометрически подобные модели и так называемые <иусловно-подобныеъ модели, тождественные по характеру напряженного состояния в поверхностном слое с натурными образцами. Каждый из этих типов моделей имеет ограниченную область применения в силу специфики характера явлений усталости.  [c.218]


Смотреть страницы где упоминается термин Объект геометрической модели : [c.59]    [c.176]    [c.7]    [c.165]    [c.42]    [c.56]    [c.93]    [c.133]    [c.137]    [c.145]    [c.36]    [c.71]   
Моделирование конструкций в среде MSC.visual NASTRAN для Windows (2004) -- [ c.64 ]



ПОИСК



Модель геометрическая

Объект геометрический



© 2025 Mash-xxl.info Реклама на сайте