Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критическая группа

ПД — предельная эквивалентная доза за год для ограниченной части населения, контролируемой по усредненной для критической группы органов дозе внешнего излучения и уровню радиоактивных выбросов и радиоактивного загрязнения объектов внешней среды ПД — основной дозовый предел для лиц категории Б.  [c.143]

Однако в последние годы безопасность АЭС связывают с радиационной опасностью для населения последствий маловероятных тяжелых аварий. Чтобы ограничить радиационную опасность для населения возможных проектных аварий, в СССР, в отличие от некоторых других стран, нормируется (ограничивается) доза за год после аварии на границе санитарно-защитной зоны . Эта доза составляет 10 бэр вследствие внешнего облучения индивидуума и 30 бэр на щитовидную железу критической группы населения (дети) в результате ингаляционного поступления в организм радиоактивных изотопов иода. Надо отметить, что это более жесткое ограничение радиационного воздействия при аварии, чем ограничение, принятое в некоторых других странах, особенно если иметь в виду, что названные значения дозы допускаются при наихудших погодных условиях рассеяния аварийного выброса в атмосфере. Чтобы при проектной аварии радиационное воздействие не превысило допустимое, АЭС оборудуются специальными устройствами (системами), задача которых — максимально сократить поступление радиоактивных веществ за пределы АЭС при аварии. Тем не менее опасность (даже ограниченная) аварии на АЭС перерастает сегодня в проблему общественного признания ядерной энергетики.  [c.147]


Критическая группа — совокупность определенного контингента людей, которые по условиям обитания, возрасту или другим факторам могут подвергаться наибольшему риску от облучения в данных условиях.  [c.528]

Санитарно-защитная зона — территория вокруг ЛС, на которой уровень облучения людей в условиях нормальной эксплуатации может превысить установленный предел дозы облучения населения. При проектных авариях (см. подпункт Виды аварий ) ожидаемые дозы облучения критических групп населения на границе санитарно-защит-ной зоны не должны превышать уровень А критерия для принятия решения, т.е. проведения защитных мероприятий не требуется.  [c.497]

Дозовые пределы для населения относят к средней дозе у критической группы.  [c.500]

Таблица 11.36. Годовые пределы облучения критических групп населения вблизи АС Таблица 11.36. Годовые пределы облучения критических групп населения вблизи АС
Проводят мониторинг радиоактивности объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения критических групп населения. Осуществляют меры но снижению доз на основе принципа оптимизации  [c.505]

Вторая группа. Если в сплавах при нагреве происходит фазовое превращение (аллотропическое превращение, растворение второй фазы и т. д.), то нагрев выше некоторой критической температуры вызывает изменение в строении сплава. При последующем охлаждении произойдет обратное превращение, Если охлаждение достаточно медленное, то превращение будет полное и фазовый состав будет соответствовать равновесному состоянию.  [c.225]

Если исходная структура хорошая и нет необходимости в перекристаллизации, а требуется только снизить внутренние напряжения, то нагрев под отжиг ограничивают еще более низкими температурами, ниже критической точки. Это будет низкий отжиг (см. рис. 249). Очевидно, что эта операция относится к первой группе видов термической обработки (отжиг первого рода), тогда как полный и неполный отжиг относится ко  [c.309]

Карбиды образуются элементами, расположенными левее Ре в периодической системе эти элементы переходных групп имеют менее достроенную р-электронную оболочку. Крайнему левому элементу периодической системы соответствует более устойчивый карбид. По степени химического сходства с С карбидообразующие элементы составляют ряд Ре, Мп, Сг, Мо, , ЫЬ, V, Та, 2г, Т1. Причем элементы, расположенные в начале данного ряда, образуют менее устойчивые карбиды, легко диссоциирующие при нагреве, а элементы, расположенные в конце данного ряда, — более устойчивые карбиды, диссоциирующие лишь при температурах, превышающих критические точки сплавов.  [c.162]


Кинетика диффузионного превращения. Диффузионное превращение происходит по механизму образование зародыша и рост новой фазы . Этот тип превращения подчиняется тем же общим закономерностям, что и процессы кристаллизации жидкости (см. гл. 12). Существуют некоторые особенности, связанные с твердым состоянием исходной и образующейся фаз и относительно низкой температурой превращений. Образование зародышей критических размеров сопровождается увеличением свободной энергии системы, равным /з поверхностной энергии зародышей (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается в результате флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах образуются фазы, отличающиеся по составу от исходной, поэтому для образования зародыша необходимо также наличие флуктуации концентрации. Последнее затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. Другой фактор, затрудняющий образование зародыша новой фазы, связан с упругой деформацией фаз, которая обусловлена различием удельных объемов исходной и образующейся фаз. Энергия упругой деформации увеличивает свободную энергию и, подобно поверхностной энергии, вносит положительный вклад в баланс энергии. Критический размер зародышей и работа их образования уменьшаются с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре Гр, а также при уменьшении поверхностной энергии зародыша.  [c.493]

В результате исследований подобных графиков стержни условно делятся на три группы. Стержни большой гибкости (й- й р д), для которых критические напряжения определяются по формуле Эйлера (2.126). Стержни средней гибкости (й 1)<й <й-пред). Для которых критические напряжения определяются по формуле Ясинского  [c.255]

Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]

В 1869 г. критическое явление было исследовано Т. Эндрюсом, а начиная с 1873 г.— группой киевских физиков во главе с М. П. Авенариусом.  [c.243]

На практике можно руководствоваться следующим правилом вещества, относящиеся к одному и тому же типу химических соединений и имеющие одинаковые критические коэффициенты, образуют группу термодинамически подобных веществ. Если к тому же вещества имеют одинаковое или близкое значение отношения g/R (это условие приближенно выполняется, когда молекулы рассматриваемых веществ состоят из одинакового числа атомов), то функции, выражающие зависимость свойств вещества от приведенных параметров, будут для всех веществ теми же самыми.  [c.214]

Особенностью перегретых паров при небольших степенях перегрева является ассоциация их молекул, т. е. объединение молекул в группы из нескольких (чаще всего из двух) молекул. Присутствие, и притом в заметном количестве, подобных групп в насыщенных и слегка перегретых парах обнаружено экспериментально в парах ряда жидкостей, в первую очередь жидких металлов, которые, как известно, имеют наиболее высокие критические температуры.  [c.284]

В этом случае внутреннее давление существенно зависит от температуры, и ядро звезды может, следовательно, регулировать темп горения углерода. Поэтому неустойчивость — гидростатическая неустойчивость — и, как следствие, имплозия возникают только после образования железного ядра, т. е. ядра звезды, состоящего из атомных ядер группы железа. Проследим за возникновением этой неустойчивости. Лишенное ядерных источников энергии железное ядро звезды (опять-таки из-за нейтринных потерь) быстро разогревается и уплотняется. На первых порах темп гравитационного сжатия, определяемый нейтринными потерями, будет таким, что ядро звезды успеет подстроиться под изменяющиеся условия и останется в гидростатическом равновесии. Однако при температурах Т Ъ-10 К или при плотностях р > 1,15-10 г/см включаются столь мощные холодильники , что гидростатическое равновесие ядра звезды обязательно должно нарушиться. Какая величина быстрее достигнет критического значения при гравитационном сжатии — температура или плотность, определяется массой углеродного ядра.  [c.618]


Критический объем Укр экспериментально определить очень трудно, так как незначительные колебания давления (температуры) в критической точке приводят к резко отличающимся значениям Укр (рис. 5-8). В связи с этим значение критического объема, как правило, определяется графоаналитическими методами. Эти методы можно разделить на две группы  [c.100]

Термодинамическое подобие распространяется не только на термические свойства веществ, но и на калорические величины. Выберем систему безразмерных параметров л, т, ф с опорной точкой в критической точке. Тогда для группы подобных веществ уравнение  [c.127]

Выше рассматривалось поведение кристалла, ось растяжения которого находилась внутри стереографического треугольника. Кристаллы с осями, лежащими на границах треугольника, составляют особую группу, поскольку критические напряжения сдвига у них одинаковы более чем для одной системы скольжения поэтому пластическая деформация начинается не по одной плоскости скольжения.  [c.119]

Приближение среднего поля описывает поведение системы тем хуже, чем сильнее флуктуации, так как в теории среднего поля коррелированные флуктуации параметра порядка не учитываются. Соответственно этому набор критических показателей, вообще неодинаков для различных фазовых переходов. Поэтому универсальность фазовых переходов второго рода надо понимать в том смысле, что для группы определенных фазовых переходов критические показатели одни и те же, причем таких групп может быть несколько. В тех случаях, когда в силу внутренних особенностей системы флуктуации в ней оказываются слабыми, справедлива теория Ландау, и критические показатели будут иметь значения, вытекающие из этой теории. Последнее справедливо очевидно для сверхпроводящих переходов и для фазовых переходов в некоторых сегнетоэлектриках.  [c.254]

Флуктуационные эффекты характеризуются значени ми корреляционной функции плотности и корреляционного радиуса флуктуаций, определяемого расстоянием, на котором корреляция существенно уменьшается. В области критической точки радиус корреляции значительно больше радиуса действия межмолекулярных сил, а флуктуации плотности в непосредственной близости к критической точке достигают значения самой плотности. Из этого складывается следующее представление о состоянии вещества в непосредственной близости к критической точке. Около критической точки веш,ество подобно газу, который состоит из отдельных групп (кластеров) молекул, напоминающих микроскопические капли жидкости, размер которых быстро возрастает с приближением к критической точке. Уместно напомнить, что аналогичная точка зрения на состояния вещества в области критической точки уже содержалась в теории ассоциации реальных газов.  [c.276]

Так как проходные площади в обведенной группе ступеней не меняются и при данных соотношениях давлений в этих ступенях не возникает критическая скорость, то расход пара через обведенную группу ступеней находим по формуле (3.44)  [c.141]

Претерпели изменения и требования к защите ограниченной части населения, проживающего вблизи АЭС. Дозовая квота для этой части населения составляет только 5% дозового предела для лиц категории Б, т. е. 25 мбэр/год, причем 20 мбэр/год обусловлено газоаэрозольными отходами АЭС и 5 мбэр/год — радионуклидами, поступившими с АЭС в окружающую среду с жидкими отходами (все значения указаны для первой группы критических органов, для второй и третьей групп — в три и шесть раз больше соответственно). Согласно СП АС—88 названный норматив должен выполняться в режиме нормальной эксплуатации АЭС для критической группы населения ближайшего к АЭС населенного пункта. Естественно, что такой подход к нормированию радиационных воздействий на население исключает возможность априорного установления допустимого выброса тех или иных радионуклидов с АЭС в атмосферу (табл. 3.3 и 3.4 в СП АЭС—79) для каждой АЭС должен быть определен ее предельно допустимый выброс, т. е. должны быть учтены особенности АЭС, особенности ее региона (климатические условия, условия и пути поступления- радионуклидов к человеку, распределение населения по территории, примыкающей к АЭС, и т. п.) и найдена (рассчитана) предельно допустимая активность каждого из дозообразующих радионуклидов, который может поступать в атмосферу и приводить к облучению населения определенного (для данной территории) населенного пункта, точнее, критической группы населения этого населенного пункта дозой до 20 мбэр/год (в расчете на первую группу критических органов).  [c.9]

Для каждой АЭС согласно требованиям СП АС—88 проектом устанавливается годовой допустимый сброс радиоактивных веществ с жидкими отходами в водоем-охладитель. Допустимый сброс не должен быть больше такого, при котором радиационное воздействие на проживающее вблизи АЭС население (его критическую группу) составит 5 мбэр/год. Допустимый сброс должен быть рассчитан по методике, согласованной с органами Госсаннадзора. В настоящее время действует Методика определения допустимых сбросов радиоактивных веществ в водоемы-охладители. РД 1600.03—86 , разработанная НИКИЭТ, ИБФ и ИПГ. Основу Методики составляют следующие наблюдаемые факты [24, 25] процесс перераспределения радионуклидов, поступивших в воду водоема-охладителя, по биотическим и абиотическим компонентам экосистемы водоема определяется присущими ему гидрологическими биогеохимическими факторами в биогеоценозе водоема-охладителя радионуклиды распределяются так, что их основная доля содержится в абиотических компонентах содержание радиоактивных веществ в биотических компонентах экосистемы водоема-охладителя определяется их содержанием в абиотических компонентах характерное время, определяющее перераспределение радиоактивных веществ между абиотическими и биотическими компонентами экосистемы водоема-охладителя, существенно меньше периода полураспада радионуклидов, поступивших в водоем.  [c.12]


Предел дозы (ПД) — предельная эк-вивалентная доза за год для ограниченной части населения предел дозы устанавливается меньше ПДД для предотвращения необоснованного облучения этого контингента людей предел дозы контролируется по усредненной для критической группы дозе внешнего излучения и уровню радиоактивных выбросов и радиоактивного загрязнения объектов внешней среды ПД является основным дозовым пределом для лни категории Б (табл. 7.33).  [c.528]

Предел дозы (ПД) — допустимое значение эквивалентной (п. 24) дозы за год для ограниченной части населения (п. 32) предел дозы контролируется по усредненной для критической группы (и. 33) дозе внешнего излучения (п. 14) U уровню радиоактивных выбро-  [c.436]

Дозовые пределы облучения для критической группы населения, проживающего вблизи АС, установлены СПАЭС-88/93 (табл. 11.36).  [c.501]

Критический диаметр указан для полной прокаливаемости 957о мартенсита при нижнем содержании углерода и легирующих элементов и для охлаждения в масле (для стали I группы — в воде).  [c.385]

При проектировании технических объектов можно выделить две основные группы процедур анализ и синтез. Для синтеза характерно использование структурных моделей (см. книгу 6), для анализа—использопаиие функциональных моделей. Методы решения моделей излагаются в книге 5. В САПР лнализ выполняется математическим моделированием. Математическое моделирование — процесс создания модели н опсрпрова-нпе ею с целью получения сведений о реальном объекте. Альтернативой математического моделирования является физическое макетирование, но у математического моделирования есть ряд преимуществ меньшие сроки на подготовку анализа значительно меньшая материалоемкость, особенно при проектировании крупногабаритных объектов возможность выполнения экспериментов на критических режимах, которые привели бы к разрушению физического макета, и др.  [c.5]

Таким образом, теория Ван-дер-Ваальса, дополненная соображениями устойчивости, показывает, что при температурах и давлениях, ниже некоторых критических, которые определяются положением вершины К кривой АКБ, все однородные состояния вещества распадаются на две группы, одна из которых находится левее кривой Л КВ, а другая — правее этой кривой. Видно, что в состояниях первой группы плотность вещества больше, а сжимаемость гораздо меньше, чем в состояниях второй группы. Иначе говоря, различие между ними точно такое же, как различие между С0СТ05ШИЯМИ жидкой и газообразной фаз.  [c.139]

По характеру временной зависимости акустической эмиссии (активность, скорость счета, энергия) различают три типа источников неактивные, характеризующиеся монотонным умень-щением параметров эмиссии активные, отличающиеся квазипостоянным поведением параметров критически активные, для которых наблюдается постоянный рост эмиссии. Все критически активные и активные источники проверяются штатными методами неразрушающего контроля. Отбракованный металл исследуют дополнительно. Неактивные источники проверяют выборочно, подразделяя их на три группы. Первая и вторая группы считаются потенциально опасными. К ним относят источники с высокой средней энергией и малым числом собы-  [c.183]

В середине 60-х годов в связи с успехами в области экспериментальных исследований, показавшими расхождение в поведении критических показателей с предсказаниями классической теории, окончательно сформировалась идея об определяющей роли флуктуаций при Т Тс- Введенная гипотеза подобия Вайдома-Каданова-Покровского-Паташинского [32—34] позволила феноменологически описать влияние флуктуаций. В 1971 г. Вильсон заложил основы микроскопического подхода к проблематике, связанной с крупномасштабными флуктуациями (метод ре-нормализационной группы (РГ)) [35].  [c.214]

Третью группу составляют характеристики разрушения. В инженерной практике эти характеристики используются сравнительно недавно. Характеристики разрушения определяются на образцах с заранее выращенными начальными трещинами и оцениваются следующими основными параметрами вязкость разрушения, критический коэффициент интенсивности напряжений при плоской деформации Ki , вязкость разрушения, условный критический коэффициент интенсивности напряжений при плосконапряженном состоянии Кс, удельная работа образца с трещиной КСТ и скорость роста трещины усталости СРТУ при заданном размахе интенсивности напряжений /S.K.  [c.46]

ТИН подразделяют на две группы обратимые — ТИН, исходный внешний вид (цвет или яркость свечения) которых восстанавливается после восстановления исходной температуры необратимые — ТИН, необратимо изменяющие свой внешний вид (цвет или форму) при воздействии критической температуры. Различают пять типов ТИН термохимический индикатор, кристаллоструктурный, люминесцентный, жидкокристаллический ТИН и ТИН плавления. ТИН применяют в виде термопорошков.  [c.194]

К первой группе относится метод, в основе которого лежит правило Планка — Гиббса. Идея его заключается в следующем. Располагая точными даниьши на кривой парообразования р=ра(Т), вычисляем производную в критической точке dpj lT)j- =а. По р, и,  [c.101]

Как показывает изучение свойств реальных веществ, действительное число индивидуальных констант, входящих, в частности, в уравнение состояния, больще двух. Это означает, что подобными являются только некоторые группы вещссп для каждой из таких групп существует свой набор критических показателей, и Беи ества, составляющие данную группу, одинаковым образом изменяют свое состояние в критической области. Другими словами, для группы термодинамически подобных веществ критические явления вполне универсальны.  [c.278]

Критические значения Окр и отвечающие максимуму Ф, представляют собой размеры сферических зародышей новой фазы. Согласно Френкелю, они образуются в результате гетерофазных флуктуаций плотности (этим названием подчеркивается отличие от образования комплексов или групп молекул в однофазных состояниях вследствие гомофазиых флуктуаций, не связанных с изменением агрегатного состояния). Зародыши новой фазы критического размера (т. е. капельки жидкости радиусом йкр и пузырьки пара радиуса flfq, находятся в равновесии (хотя и неустойчивом) с исходной фазой.  [c.380]


Смотреть страницы где упоминается термин Критическая группа : [c.11]    [c.540]    [c.442]    [c.497]    [c.126]    [c.12]    [c.151]    [c.195]    [c.220]    [c.380]   
Теплоэнергетика и теплотехника (1983) -- [ c.528 ]



ПОИСК



Группы моиодромии критических точек

Малышев Термодинамическое и молекулярное подобия гексафторидов серы, молибдена, вольфрама, урана. Критические параметры гексафторидов элементов VI, VII, VIII групп периодической системы элементов Д. И. Менделеева

Ренормализационная группа, метод в теории критических явлений

Соображения подобия и группа перенормировки в теории критических явлений



© 2025 Mash-xxl.info Реклама на сайте