Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Удельное сопротивление и температурный коэффициент сопротивления металлов

Термисторы представляют собой чувствительные к колебаниям температуры сопротивления, часто используемые для автоматического обнаружения, измерения и контроля физической энергии. Важнейшее отличие термисторов от других материалов с переменным сопротивлением заключается в их исключительной чувствительности к сравнительно малым изменениям температуры. В противоположность металлам, имеющим небольшой температурный коэффициент сопротивления, термисторы обладают большим отрицательным температурным коэффициентом. Обычно термисторы выполняют в виде бусинок, дисков или шайб и стержней. Их изготовляют из смесей окислов различных металлов, таких, как марганец, никель, кобальт, медь, уран, железо, цинк, титан и магний, со связующими материалами. Окислы смешивают в определенных пропорциях, обеспечивающих получение требуемого удельного сопротивления и температурного коэффициента сопротивления. Полученным смесям придают нужную форму и спекают в контролируемых атмосферных и температурных условиях. Окончательный продукт представляет собой твердый керамический материал, который можно монтировать различными способами в зависимости от механических, температурных и электрических требований.  [c.359]


Средние значения удельного электрического сопротивления и температурного коэффициента электросопротивления металлов при 20 °С  [c.231]

Удельное сопротивление и температурный коэффициент сопротивления металлов  [c.115]

В случаях, когда металлы сильно отличаются друг от друга объемами своих атомов и температурами плавления при этом удельное сопротивление и температурный коэффициент удельного сопротивления линейно изменяются в зависимости от содержания примеси в пределах от О до 100%, как это видно на рис. 4-1, а, на котором показана зависимость от соотношения компонент удельного сопротивления и его температурного коэффициента для сплава хрома и висмута, образуюш,их в сплаве механическую смесь.  [c.248]

Так как для сплавов р обычно много больше р , то вплоть до высоких температур их удельное сопротивление меняется с температурой значительно слабее, чем у чистых металлов, и температурный коэффициент сопротивления сплавов, как правило, значительно ниже температурного коэффициента сопротивления чистых металлов.  [c.190]

Характер влияния металлической примеси на величину удельного сопротивления данного металла зависит от типа образуемого сплава. Различают три типа сплавов механическая смесь, твердый раствор и химическое соединение. В первом случае в сплаве содержатся кристаллы обоих металлов — кристаллы примеси механически смешаны с кристаллами основного металла. Такой сплав получается в случаях, когда металлы сильно отличаются друг от друга объемами своих атомов и температурами плавления при этом удельное сопротивление и температурный коэффициент удельного сопротивления линейно изменяются в зависимости от содержания примеси в пределах от О до 100%, как это видно на рис. 6-1,а, на котором показана зависимость удельного сопротивления и температурного коэффициента от пропорции алюминия и свинца, образующих в сплаве механическую смесь.  [c.246]

Таблица 21.1. Удельное сопротивление р , температурный коэффициент при О °С и характеристическая температура 6 чистых металлов [1,2 Таблица 21.1. <a href="/info/43842">Удельное сопротивление</a> р , <a href="/info/18876">температурный коэффициент</a> при О °С и <a href="/info/18431">характеристическая температура</a> 6 чистых металлов [1,2

Чистые благородные металлы имеют низкое удельное электросопротивление и высокий температурный коэффициент. Температурный коэффициент электросопротивления значительно уменьшается в присутствии ничтожных количеств примесей, и поэтому величина его является критерием чистоты металла. Устойчивость электросопротивления и температурного коэффициента платины используется в термометрах сопротивления.  [c.397]

Материалы, из которых изготовляются термометры сопротивления, должны обладать большим температурным коэффициентом сопротивления, большим удельным сопротивлением, постоянством химических и физических свойств, а зависимость сопротивления металла от температуры должна выражаться плавной кривой. Предъявляемым требованиям удовлетворяют платина и медь, из которых изготовляют технические термометры сопротивления. Платиновые термометры сопротивления предназначаются для длительного измерения температуры в пределах от — 200 до 4-500° С, а медные —в пределах от — 50 до -МОО°С. Медные термометры сопротивления могут быть использованы для кратковременных измерений температуры до 150°С.  [c.57]

В процессе первичного нагрева до 1100 °С N1—В-покрытиям свойствен отрицательный температурный коэффициент сопротивления и только при повторном нагреве электрическое сопротивление, как у большинства металлов, начинает монотонно возрастать. После термической обработки удельное электрическое сопротивление осадков снижается.  [c.389]

Чтобы повысить величину удельного сопротивления проводников, применяют сплавы нескольких металлов. Установлено, что только сплавы с неупорядоченной структурой обладают повышенными значениями удельного сопротивления и малыми значениями температурного коэффициента сопротивления. Сплавами с неупорядоченной структурой называются такие, в кристаллической решетке которых нет правильного чередования атомов металлов, составляющих сплав. Эти сплавы составляют группу проводниковых материалов с большим удельным сопротивлением и малыми значениями температурного коэффициента удельного сопротивления. Все перечисленные группы проводников обладают высокой пластичностью, позволяющей получать провода диаметром до 0,01 мм и ленты толщиной 0,05—0,1 мм.  [c.100]

Метод электрического сопротивления может быть применен для определения величины удельного электрического сопротивления р и температурного коэффициента электрического сопротивления <х, знание которых необходимо для характеристики металлов и сплавов, применяемых в электротехнике, а также для изучения фазовых и структурных превращений, протекающих в металлах и сплавах в твердом состоянии. Например, при исследовании процесса отпуска стали получают кривую электрическое сопротивление — температура отпуска. Изменение электрического сопротивления, характеризуемое этой кривой, указывает на превращения, протекающие в стали при отпуске.  [c.25]

Значения удельного сопротивления, его температурного коэффициента и температурного коэффициента линейного расширения некоторых металлов  [c.31]

Кроме металлов для изготовления термометров сопротивления применяют также полупроводниковые материалы германий, окислы меди, марганца, кобальта, магния, титана и их смеси. Большинство полупроводниковых материалов обладает большим отрицательным температурным коэффициентом сопротивления и также очень большим удельным сопротивлением. Поэтому можно изготавливать очень малые по размерам чувствительные элементы термопреобразователей сопротивления, обладающих  [c.46]

Для практической термометрии интерес представляют переходные металлы, имеющие частично заполненные -уровни, а также з-уровни (символы з и соответствуют значениям орбитального квантового числа О и 2 см. [6]). Поскольку -электроны более локализованы, чем з-электроны, проводимость обусловлена главным образом последними. Однако вероятность рассеяния 3-электронов в -зону велика, поскольку плотность -состояний вблизи уровня Ферми высока (рис. 5.5), поэтому удельное сопротивление переходных металлов выще, чем у непереходных. Наличие -зоны влияет также на характер температурной зависимости. При высоких температурах величина кТ может быть уже не пренебрежимо мала по сравнению с расстоянием от уровня Ферми до верхней или нижней границы -зоны. Предположение, что поверхность Ферми четко разделяет занятые и незанятые состояния, перестает быть верным, и для параболической -зоны в формулу удельного сопротивления вводится поправочный коэффициент (1—5Р), где В — постоянная. Однако плотность состояний в -зоне вовсе не является гладкой функцией энергии (рис. 5.5), поэтому эффект будет осложнен изменением плотности состояний в пределах кТ от уровня Ферми. Отклонение температурной зависимости от линейной может быть как положительным, так и отрицательным.  [c.194]


Температурный коэффициент удельного сопротивления металлов. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усилений колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т. е. уменьшается средняя длина свободного пробега электрона X, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 7-2). Иными словами, температурный коэффициент (см. стр. 39) удельного сопротивления металлов (кельвин в минус первой степени)  [c.192]

Опыт, накопленный при изучении проводимости металлов и сплавов, экспериментальная техника, созданная для исследования электроизоляционных материалов, служат базой для определения электрических свойств покрытий. Рассматриваются многие свойства удельное электрическое сопротивление, электрическая прочность , электрическая проводимость, контактное сопротивление между покрытием и основным металлом, диэлектрическая проницаемость,, температурный коэффициент электрического сопротивления. Что касается керамических покрытий, которые используются в качестве электроизоляционного материала, то основным их свойством следует считать электрическую прочность. За электрическую прочность часто принимают напряженность пробоя, отнесенную к усредненной толщине покрытия.  [c.85]

Удельное электрическое сопротивление кристалла графита вдоль спайности равно 0,4-iO ом-сл1 и имеет положительный температурный коэффициент, как большинство металлов. У графитовых блоков и порошков к объемному сопротивлению вещества присоединяется сопротивление контактов между кристаллитами и зернами. Поэтому сопротивление блоков из крупнокристаллического графита значительно больше и составляет (0,5 5,0) 10 ом-см, а для высокодисперсного графита (8-н20)-10 ом-см.  [c.405]

Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления-, у металлов он положителен, у материалов с ковалентным и ионным типом связи — отрицателен. При нагреве металлов концентрация носителей зарядов — электронов не увеличивается, а сопротивление их движению возрастает из-за увеличения амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов. По этой причине удельное электросопротивление таких материалов при нагреве снижается. Начиная с (0,8-0,9)Тпл концентрация носителей заряда становится большой, а сами материалы делаются проводящими.  [c.67]

Другие системы. Некоторые теллуриды и селениды исследовались также при стехиометрическом составе, однако полученные результаты недостаточно надежны (изучение концентрационной зависимости свойств существенно важнее, так как при этом можно избежать проблемы измерения свойств при точном стехиометрическом составе, поскольку данные для этого состава можно получить интерполяцией). Температурные коэффициенты у этих соединений обычно отрицательные в жидком состоянии и удельное сопротивление после плавления уменьшается, но проводимость в жидком состоянии достаточно высока. Такие же результаты получены для силицидов переходных металлов, у которых удельное сопротивление в жидком состоянии примерно равно 3-10 мком-см. Для некоторых сплавов имеются сообщения о скачкообразном изменении температурного коэффициента удельного сопротивления аь при температурах, находящихся вблизи точки плавления [70, 376, 377]. Ясно, что необходимо продолжить исследования, поскольку эти наблюдения говорят о возможности изменений в дискретной структуре жидких сплавов, выраженных, возможно, в форме фазовых изменений . Кажется, никто сильно не возражает против возможности нестабильности одной жидкой структуры по отношению к другой при некоторой критической температуре, хотя при высоких температурах (и, следовательно, высоких амплитудах атомных колебаний) структуры должны быть очень стабильными. Эти явления, возможно, связаны с изменением а К) из-за температуры, так как эта функция тоже влияет на температур-  [c.134]

Температурный коэффициент электрического сопротивления монокристалла графита положительный, как и для большинства металлов с преобладающей электронной проводимостью. Для порошков и блоков этот коэффициент отрицательный при не очень высоких температурах. Для составов, соот-ветствующих промышлен-/ 1— ным сортам графита, минимум электросопротивления обусловлен сложениеМ[ двух противоположно действующих факторов с одной стороны, электросопротивление кристаллитов графита с повышением температуры увеличивается, с другой — улучшается контакт между ними. При низких температурах преобладает второй фактор, при высоких — первый I]. Чем выше дисперсность материала, тем больше будет величина электросопротивления при низких температурах и тем глубже будет минимум электросопротивления. Выше 1000° С электросопротивление растет, как правило, пропорционально температуре. На рис, 9 представлены кривые изменения электросопротивления некоторых сортов графита [73]. Аналогичные значения приводят авторы работ [75 237, с. 74]. Для температур выше 1000° С удельное сопротивление можно рассчитать по формуле  [c.38]


Зависимость удельного сопротивления металлов от температуры. Введем понятие температурного коэффициента, которым будем пользоваться и в дальнейшем. Температурный коэффициент (ТК) какого-либо параметра г материала или радиоэлектронного компонента — это логарифмическая производная этого параметра по температуре  [c.15]

Как отмечалось, р металлов при повышении Г возрастает (см. рис. 1.1, 1.2 и 3.6). Следовательно, температурный коэффициент удельного сопротивления металлов  [c.15]

Полупроводники по удельному сопротивлению, которое при комнатной температуре составляет 10 — 10 Ом -м, занимают промежуточное положение между металлами и диэлектриками. Они обладают совокупностью специфических свойств, которые и выделяют их среди других веществ. В отличие от металлов полупроводники имеют в большом интервале температур отрицательный температурный коэффициент удельного сопротивления ТКр, т. е. положительный температурный коэффициент удельной проводимости ТКу (рис. И.1).  [c.47]

К сплавам высокого сопротивления относят сплавы, обладающие большим удельным сопротивлением (большим, чем серебро, медь и другие хорошие проводники) сплавы с малым температурным коэффициентом сплавы, не расплавляющиеся и ие окисляющиеся при высокой температуре. Сплавы высокого сопротивления условно делят на сплавы никелевые и медно-никелевые и жаростойкие металлы и сплавы.  [c.400]

Изменение сопротивления самого нагревателя в процессе окисления будет определяться соотношением степени уменьшения сечения нагревателя в результате перехода металла в оксиды и изменения удельного сопротивления и его температурного коэффициента. Наибольшее изменение сопротивления отмечается для тонких проволок с диаметром 1,0 мм и менее. Например, в трубчатых электронагревателях (ТЭН) сопротивление нагревателя при комнатной температуре в процессе эксплуатации может уменьшиться на 60—70%- Отношение же сопротивления нагревателя при температуре эксплуатации к сопротивлению при комнатной температуре увеличивается от 1,04—1,08 в начале эксплуатации до 1,7—1,8 в конце [10—12].  [c.21]

НИИ удельное сопротивление имеет максимум, а температурный коэффициент удельного сопротивления минимум, как это видно на рис. 6-1,6. Таким характером обладает сплав меди и никеля. При ограниченной растворимости одного металла в другом изменение удельного сопротивления сплава показано а рис. 6-1,в. При малом содержании примеси, не выходящем за пределы растворимости в основном металле, зависимость удельного сопротивления от содержания примеси линейная.  [c.286]

В основе электротехнических угольных материалов лежат графит и уголь — разновидности почти чистого углерода, являющегося полупроводником, вследствие чего графит и уголь имеют отрицательный температурный коэффициент удельного сопротивления, хотя по величине проводимости немногим уступают металлам и их сплавам. Важнейшими видами электротехнических угольных изделий являются 1) щетки для электрических машин 2) угольные электроды (для электрических печей, электролитических ванн и сварки) 3) осветительные угли 4) непроволочные сопротивления 5) микрофонные порошки, мембраны и другие детали техники связи 6) части гальванических- элементов 7) детали электровакуумных приборов (аноды, сетки).  [c.334]

В табл. 19.1 представлены значения удельного сопротивления и температурного коэффициента сопротивления чистых металлов, а также, в некоторых случаях, отношение удельного сопротивления при температуре жидкого гелия к удельному сопротивлению при нормальных условиях, р4.2°к/р273 к, характеризующее достигнутую степень чистоты материала. В тех случаях, когда для данного металла приводятся более подробные данные, соответствующее указание дается в первом столбце таблицы. Металлы в таблице расположены в порядке возрастания массового числа.  [c.304]

Существует класс полупроводниковых приборов, выполненных на основе смешанных окислов переходных металлов, которые известны под общим названием термисторов. Термин термистор происходит от слов термочувствительный резистор . Толчком к разработке термисторов послужила необходимость компенсировать изменение параметров электронных схем под влиянием колебаний температуры. Первые термисторы изготавливались на основе двуокиси урана ПОг, но затем в начале 30-х годов стали использовать шпинель MgTiOз. Оказалось, что удельное сопротивление MgTiOз и его температурный коэффициент сопротивления (ТКС) легко варьируются путем контролируемого восстановления в водороде и путем изменений концентрации MgO по сравнению со стехиометрической. Использовалась также окись меди СиО. Современные термисторы [60, 61] почти всегда представляют собой нестехиометрические смеси окислов и изготавливаются путем спекания микронных частиц компонентов в контролируемой атмосфере. В зависимости от того, в какой атмосфере происходит спекание (окислительной или восстановительной), может получиться, например, полупроводник п-типа на поверхности зерна, переходящий в полупроводник р-типа в глубине зерна, со всеми вытекающими отсюда последствиями для процессов проводимости. Помимо характера проводимости в отдельном зерне, на проводимость материала оказывают существенное влияние также процессы на границах между спеченными зернами. Высокочастотная дисперсия у термисторов, например, возникает вследствие того, что они представляют собой сложную структуру, образованную зонами плохой проводимости на границах зерен и зонами относительно высокой проводимости внутри зерен.  [c.243]

Серебро. Среди металлов серебро — наиболее низкоомный проводник величина р = 0,016 ом Температурный коэффициент сопротивления TKR = 3,6 10 /1 град. Температура плавления серебра 960° С. Серебро отличается небольшой твердостью оно является высокопластичным металлом, легко претерпевающим упругие деформации. Его окисление на воздухе при нормальной температуре протекает весьма медленно, поэтому его используют для покрытий проводников в высокочастотных элементах. При высоких частотах сопротивление посеребренного проводника может быть в десятки раз ниже, чем медного. При повышенных температурах (свыше 200° С) серебро на воздухе начинает окисляться. Если в воздухе присутствуют сернистые соединения, то на поверхности образуется слой сернистого серебра AgjS с высоким удельным сопротивлением. Для защиты серебряного покрытия от окисления и воздействия сернистых соединений в некоторых случаях, на него наносят слой лака или весьма тонкий слой (толщиной доли микрона) палладия. Из серебра выполняют электроды слюдяных и керамических конденсаторов проводниковые элементы схем, провода высокочастотных катушек и т. п. Серебро является компонентом различных сплавов и контактных материалов.  [c.274]

Медь. Вторым после серебра металлом с низким сопротивлением является медь. Для проводников используется электролитическая медь с содержанием Си 99,9% и кислорода 0,08%. Высокой вязкостью и пластичностью обладает бескислородная медь, содержащая кислорода не более 0,02%. Температура плавления меди 1084° С, температура рекристаллизации — около 270° С. При нагревании выше этой температуры резко снижается прочность и возрастает пластичность. На воздухе поверхность медного проводника быстро покрывается слоем закиси — окиси меди с высоким удельным сопротивлением. Высокочастотные медные токоведущие элементы защищают от окисления покрытием из серебра. Для обмоток маслонаполненных трансформаторов используют луженую медную проволоку. Техническая медная проволока диаметром от 0,1 до 12 мм выпускается твердая и мягкая, подвергаемая отжигу в печах без доступа воздуха. Мягкая проволока диаметром до 3 мм имеет временное сопротивление в среднем 0р = 27 /сГ/лл для твердой проволоки больше (Ор = 39 кГ мм% удельное сопротивление для твердой проволоки р = 0,018 ом -мм 1м, а для мягкой р = 0,0175 ом-мм м. Температурный коэффициент сопротивления меди TKR =4-45-10" Ijapad. Твердую медь применяют для контактных проводэв, коллекторов и т. п. Во всех этих  [c.274]


Жаростойкими проводниковыми материалами являются сплавы на основе никеля, хрома и некоторых других компонентов. Жароупорность этих сплавов, т. е. их неокисляемость даже при высоких температурах, обусловлена образованием на их поверхности окисной пленки большой сплошности, исключающей доступ кислорода к сплаву. Основой жаростойких окисных пленок является окись хрома (СгаОз) и закись никеля (N10), которые не испаряются с поверхности сплава при высоких температурах. Жаростойкие проводниковые материалы на основе никеля, хрома и алюминия называются соответственно нихромами, фехралями и хромалями. Все они представляют собой твердые растворы металлов с неупорядоченной структурой, поэтому эги сплавы обладают большим удельным сопротивлением и малыми значениями температурного коэффициента сопротивления.  [c.105]

Наряду с малым удельным сопротивлением чистые металлы обладают хорошей пластичностью, т. е. могут вытягиваться в тонкую проволоку (до диаметра 0,01 мм), ленты (до толщины 0,01 мм) и прокатываться в фольгу толщиной менее 0,01 мм. Сплавы металлов обладают меньшей пластичностью по сравнению с чистыми металлами, они более упруги и имеют большую механическую прочность. Характерной особенностью всех металлических проводниковых, материалов является их электронная электропроводность. Удельное сопротивление всех металлических проводников увеличивается с ростом температуры и в зависимости от температурного коэффициента сопротивления, а также в результате механической обработки, вызывающей остаточную деформацию в металле. К холодной обработке (прокатка, волочение) приходится прибегать для получения проводниковых изделий с повышенным пределом прочности при разрыве, например при изготовлении проводов воздушных линий, троллейных проводов и т. д. Чтобы вернуть деформированным металлическ , проводникам прежнюю величину удельного сопротивления, их подвергают термической обработке — отжигу без доступа кислорода.  [c.225]

Ответ. 1) У металлов удельное сопротивление при нормальной температуре находится в пределах 10 —10- Ом-м см. рис. 2-1-1), а температурный коэффициент сопротивления положителен. В области температур, близких к комнатной, удельное сопротивление, как правило, пропорцнонально температуре, однако в диапазоне температур от 20 К л0 дебаевской удельное сопротивление большинства металлов становится пропорциональным Г . В противоположность металлам материалы с ионной проводимостью и все полупроводники имеют отрицательный температурный коэффициент сопротивления.  [c.345]

Металлические рубидий и цезий были получены в стеклянных ампулах ОХМЗ ГИРЕДМЕТ. Чистота металлов — 99,97%. В точке плавления как со стороны твердой фазы, так и со стороны жидкой не отмечено никаких аномалий в температурной зависимости удельного электросопротивления. Сопротивление в твердой фазе, а также в жидкой для рубидия до 110° С, а для цезия до 230° С линейно зависит от температуры. Температура плавления (начало плавления) для рубидия 38,8 + 0,1° С, а для цезия — 28,3 + +0,1° С. Отмечено переохлаждение рубидия до 38,4 °С, а цезия — до 28,1° С. Скачок сопротивления в точке плавления для рубидия рш/ртв = 1,562, а для цезия — 1,704. Температурный коэффициент сопротивления— (1/р)- йр1йТ) в точке плавления со стороны] твердой фазы для рубидия  [c.152]

Никель и изготовляемые из него термометры сопротивления. Основным досто-ннстБом никеля является то, что он обладает высоким температурным коэффициентом электрического сопротивления (сс == 6,66 1(Г °С ) и большим удельным сопротивлением (р 12,8 - 10 S Ом м). К числу недостатков никеля следует отнести значительную окисляемость при высоких температурах и большую зависимость температурного коэффициента сопротивления от степени чистоты металла. Зависимость сопротивления никеля от температуры имеет резко нелинейную характеристику (рис. 5-2-1).  [c.196]

В электро- и радиоаппаратостроении применяют материалы с высоким удельным электрическим сопротивлением р. Обычно это сплавы полностью однородных твердых растворов с высокой концентрацией или сплавы, основная масса которых состоит из таких растворов (поскольку р их выше, а температурный коэффициент электросопротивления значительно ниже, чем у исходных металлов).  [c.282]

Свойства проводников. К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся 1) удельная проводимость у или обратная ей величина — удельное сопроти13ление р, 2) температурный коэффициент удельного сопротивления ТКр или р, 3) коэффициент теплопроводности 4) контактная разность потенциалов и термоэлектродвижущая сила (термо-ЭДС), 5) работа выхода электронов из металла, 6) предел прочности при растяжении сГр и относительное удлинение перед разрывом А///.  [c.190]

В сплавах со структурой твердых растворов удельное электросопротивление при 20 °С в зависимости от состава, согласно правилу Н.С. Кур-накова, изменяется по нелинейной зависимости (рис. 18.5). Сплав приобретает максимальное значение р в большинстве случаев при концентрации элементов, равной 50 % (ат.). Видимо, в таком сплаве примесное рассеяние вследствие искажений кристаллической решетки и нарушения периодичности энергетических зон достигает максимального значения. В тех сплавах, в которых хотя бы один из элементов является переходным металлом, температурный коэффициент ар может принимать отрицательные значения, т.е. электрическое сопротивление при нагреве несколько уменьшается. В тех случаях, когда необходим материал с повышенным электрическим сопротивлением, следует использовать сплавы со структурой твердых растворов.  [c.573]

Пленки больщинства металлов (например, благородных металлов и неферромагнитных металлов переходной группы) толщиной в несколько сот ангстрем имеют удельное электросопротивление, величина которого изменяется с изменением температуры так же, как и у сплошных металлов. Однако пленки этих металлов толщиной в несколько ангстрем имеют большое удельное электросопротивление и большой отрицательный температурный коэффициент. Зависи.мость сопротивления этих пленок от те.мпературы в широком интервале температур описывается уравнением, характерным для примесных полупроводников. Энергия активации в сильной степени зависит от состава пленок и их толщины. Для пленок значительной толщины, но еще не настолько толстых, чтобы появились типичные металлические свойства, зависимость сопротивления от температуры оказывается более сложной. Характеристики этих пленок и воспроизводимость их свойств сильно зависят от способа приготовления пленки, от присутствия сорбируе.мых газов, а в некоторых случаях — от старения и отжига.  [c.181]

Зависимость удельного сопротивления сплава двух металлов, образующих друг с другом твердый раствор, от изменения содержания каждого из них в пределах от нуля до 100% представлена графически на фиг. 134 (верхний левый график). Кривая удельного сопротивления имеет максимум, соответствующий некоторому. определенному соотношению компонентов сплава, и, при уменьшении содержания каждого из них удельное сопротивление падает, приближаясь к соответствующим значениям р чистых металлов. Обычно при этом наблюдается определенная закономерность и для изменения ТКр относителыю высокими значениями температурного коэффициента удельного сопротивления обладают чистые металлы, а у сплавов ТКр меньше и даже может достигать небольших отрицательных значений (фиг. 134 — левый нижний график).  [c.269]

Температурный коэффициент удельного сопрот ивления у жидкого металла, как правило, меньше, чем у него же в твердом состоянии, как это следует из выражения (7-10) и табл. 7-4, однако у некоторых металлов он может быть и больше. Знак температурного коэ(] и-циента удельного сопротивления в большинстве случаев положителен.  [c.285]


Смотреть страницы где упоминается термин Удельное сопротивление и температурный коэффициент сопротивления металлов : [c.273]    [c.107]    [c.135]    [c.298]    [c.194]    [c.287]   
Смотреть главы в:

Справочник по элементарной физике  -> Удельное сопротивление и температурный коэффициент сопротивления металлов



ПОИСК



Коэффициент сопротивления

Коэффициент температурный

Сопротивление металлов

Сопротивление удельное

Температурный коэффициент металлов

Удельное сопротивление металло



© 2025 Mash-xxl.info Реклама на сайте