Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения малых колебаний системы около положения устойчивого равновесия

Уравнение (20.20) называется дифференциальным уравнением малых колебаний системы около положения устойчивого равновесия. Для получения этого уравнения не обязательно прибегать к уравнениям Лагранжа второго рода — можно пользоваться любыми другими методами, например, общими теоремами динамики. Важно, чтобы в результате получилось линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Однако изложенный здесь метод является общим, одинаково пригодным как для простых, так и для сложных систем с несколькими степенями свободы.  [c.466]


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МАЛЫХ КОЛЕБАНИЙ СИСТЕМЫ ОКОЛО ПОЛОЖЕНИЯ УСТОЙЧИВОГО РАВНОВЕСИЯ  [c.28]

Дифференциальные уравнения малых колебаний системы около 28 положения устойчивого равновесия  [c.3]

Дифференциальные уравнения малых свободных колебаний консервативной системы около положения устойчивого равновесия можно составить теперь, применяя метод кинетостатики. Для этого следует силы Fs заменить силами инерции (Fs = = —mVs)] выражения обобщенных сил Qi по (72) при этом  [c.574]

В заключение отметим, что методы составления и интегрирования дифференциальных уравнений малых колебаний системы с двумя степенями свободы около положения устойчивого равновесия без всяких изменений могут быть распространены на системы с большим числом степеней свободы.  [c.483]

Дифференциальное уравнение малых свободных колебаний системы с одиой степенью свободы. Пусть имеется система с одной степенью свободы. Исследуем движение системы около положения устойчивого равновесия.  [c.213]

Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения устойчивого равновесия.  [c.264]


При интегрировании системы (18.2), представляющей собой систему двух однородных дифференциальных уравнений второго порядка с постоянными коэффициентами, исходим из того, что механическая система совершает малые колебания около положения устойчивого равновесия. Частные решения этих уравнений, предположив, что координаты qi и изменяются по простому гармоническому закону, можно представить в следующем виде  [c.83]

Корни этого уравнения k и (причем ki < /%з) определяют частоты свободных колебаний ki и 3. Оба эти корня должны быть положительными, так как в противном случае ki и будут мнимыми или комплексными и принятые частные решения дифференциальных уравнений (19.1), выраженные через тригонометрические функции мнимого или комплексного аргумента, т. е. содержащее гиперболические функции времени t, покажут неограниченное возрастание обобщенных координат, что не может быть при малых колебаниях системы около устойчивого положения равновесия.  [c.83]

До сих пор мы рассматривали свободные колебания консервативной системы с одной степенью свободы около положения устойчивого равновесия. При отсутствии сил сопротивления дифференциальное уравнение малых колебаний имеет вид  [c.468]

Таким образом, малые колебания консервативной системы с двумя степенями свободы около положения устойчивого равновесия описываются двумя линейными однородными дифференциальными уравнениям второго порядка с постоянными коэффициентами. Решение этих уравнений будем искать в форме  [c.480]

На основании изложенного в предыдущих параграфах можно вывести дифференциальные уравнения малых колебаний материальной системы около ее положения равновесия, которое, если не оговорено противное, предполагаем устойчивым.  [c.23]

В задачах этого типа рассматриваются малые колебания системы с одной (первая группа) или двумя (вторая группа) степенями свободы около положения устойчивого равновесия. В этих задачах положение устойчивого равновесия следует при нять за начало отсчета обобщенных координат и, далее, пользуясь уравнениями Лагранжа, составлять дифференциальные уравнения движения системы.  [c.405]

НЕЛИНЕЙНЫЕ СИСТЕМЫ. Теория нелинейных колебаний или, как иногда ее называют, нелинейная механика, занимается изучением периодических колебательных движений, описываемых нелинейными дифференциальными уравнениями. Системы, совершающие такие движения, называются обычно нелинейными системами . Таким образом, нелинейная механика занимается изз ением периодических движений нелинейных систем. По сравнению с линейной теорией нелинейная механика является дальнейшим углублением наших познаний о законах механического движения. Освобождаясь от многих искусственных построений линейной теории, нелинейная механика дает, как правило, более точное и полное отображение свойств колебательных движений механических систем. Дело в том, что линейность редко бывает свойством, присущим самой системе, вытекающим из ее устройства или ее физической природы. В большинстве случаев линейность есть результат упрощения реальной системы, чаще всего осуществляемого путем пренебрежения в уравнениях движения членами второго и высших порядков относительно координат и скоростей. Так, например, составляются линейные уравнения малых колебаний упругих систем около положения устойчивого равновесия. Основываясь на допущении, что, получив  [c.467]

В работах XVIII в. использовалось понятие устойчивости равновесия или движения без уточнения его содержания и без введения для него количественной меры. Это в значительной мере верно и для работ дальнейшего периода, охватывающего почти весь XIX в. — от Лагранжа до Пуанкаре и Ляпунова. Теория малых колебаний около положения равновесия или движения оставалась основным аппаратом теории устойчивости. Она была усовершенствована за это время математически Дж. Сильвестр, К. Вейерштрасс, К. Жордан дали полный анализ всех случаев, которые могут представиться при решении однородной системы линейных дифференциальных уравнений с постоянными коэффициентами. К. Вейерштрасс и, независимо от него.  [c.119]



Смотреть страницы где упоминается термин Дифференциальные уравнения малых колебаний системы около положения устойчивого равновесия : [c.429]   
Смотреть главы в:

Введение в теорию колебаний  -> Дифференциальные уравнения малых колебаний системы около положения устойчивого равновесия



ПОИСК



Дифференциальные системы

Колебание устойчивое

Колебания Уравнения колебаний

Колебания малые

Колебания около положения равновесия

Колебания около положения равновесия. Устойчивость

Колебания системы около положения равновесия

Малые колебания около положения равновесия

Малые колебания около устойчивого

Малые колебания системы

Малые колебания системы около положения устойчивого равновесия

Положение устойчивое

Равновесие системы тел

Равновесие устойчивое

Равновесия положение

Равновесия положение в малом

Равновесия положение устойчивое

Система Устойчивость

Система дифференциальных уравнений

Система малых ЭВМ

Система устойчивая

Уравнение малых колебаний системы

Уравнение устойчивости

Уравнения дифференциальные малых колебаний

Уравнения дифференциальные равновесия

Уравнения малых колебаний

Уравнения равновесия сил

Уравнения равновесия уравнения

Устойчивость положения равновесия

Устойчивость равновесия

Устойчивость равновесия системы



© 2025 Mash-xxl.info Реклама на сайте