Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ламинарное течение и турбулентность

Таким образом, установлена тесная связь между физическими процессами в возмущенном ламинарном течении и турбулентным пограничным слоем.  [c.188]

В.1. Ламинарное течение и турбулентность  [c.283]

Имеются два различных типа движения вязкой жидкости — ламинарное течение и турбулентность. Например, если жидкость движется в трубке диаметра I со средней скоростью V, то, добавив в жидкость красящее вещество, мы увидим, что при малой скорости линии тока являются гладкими и хорошо отделяются друг от друга. Такое течение называется ламинарным. С увеличением скорости можно дойти до такого состояния, когда линии тока перестанут быть гладкими, а движение жидкости станет нерегулярным и случайным. Это явление называется турбулентностью [2, 21, 22, 33, 141, 178, 220, 240, 262, 273, 275, 303, 320, 341, 364, 393].  [c.283]


Они обязаны молекулярному переносу вещества при ламинарном течении и турбулентному (молярному) переносу вещества при турбулентном характере течения.  [c.9]

При принятом выше определении числа Рейнольдса типичное поведение, наблюдаемое у разбавленных растворов, проиллюстрировано на рис. 7-1, хотя в литературе указывались и другие типы зависимости [27, 28]. При равных числах Рейнольдса коэффициент трения зависит от диаметра трубы, достигая ньютоновского значения при очень больших диаметрах. Для более концентрированных растворов часто наблюдается поведение, иллюстрируемое на рис. 7-2. Здесь еще чувствуется влияние диаметра, но переход от ламинарного течения к турбулентному обнаружить нелегко, хотя, вообще говоря, можно различить небольшой изгиб вблизи точки Re = 2100.  [c.283]

Теплоотдача от жидкости к пластине определяется характером течения рабочего тела вдоль поверхности. Около пластины образуется пограничный слой, в котором движение может быть как ламинарным, так и турбулентным. Однако и при турбулентном пограничном слое у стенки имеется тонкий ламинарный подслой, представляющий собой главное термическое сопротивление.  [c.431]

Рассматриваются как ламинарные, так и турбулентные режимы течения, хотя в большинстве практических случаев потоки многофазных систем турбулентны. Это делается по той причине, что ламинарное течение поддается строгому математическому расчету в то же время с помощью минимума логических операций можно применить подходящий метод и к соответствующему турбулентному течению. Статистическая теория турбулентности [339] рассматривает статистические свойства беспорядочного движения  [c.16]

Скорость течения по высоте ламинарного подслоя изменяется по линейному закону, и для границы ламинарного подслоя и турбулентного ядра потока (г/= 5) можно написать  [c.179]

Рис. 11.4. Распределение скоростей при обтекании пластины линейное при ламинарном течении и логарифмическое при турбулентном течении Рис. 11.4. <a href="/info/20718">Распределение скоростей</a> при <a href="/info/146156">обтекании пластины</a> линейное при <a href="/info/639">ламинарном течении</a> и логарифмическое при турбулентном течении
НЕУСТОЙЧИВОСТЬ ЛАМИНАРНЫХ ТЕЧЕНИЙ И ВОЗНИКНОВЕНИЕ ТУРБУЛЕНТНОСТИ  [c.359]


Наряду с различием конфигураций граничных поверхностей необходимо учитывать влияние режимов движения жидкости на величину и механизм потерь. Как известно из гл. 2 и 5, кинематические структуры ламинарного и турбулентного потоков различны турбулентные пульсации порождают добавочные касательные напряжения, которые обусловливают увеличение потерь энергии в турбулентных потоках по сравнению с ламинарными при сопоставимых условиях. Для оценки потерь важно знать условия перехода ламинарного течения в турбулентное. Этот вопрос рассмотрен в 6 настоящей главы. Здесь укажем только на классический опыт О. Рейнольдса, который, наблюдая поведение подкрашенных струек жидкости в стеклянной трубке, установил существование критического значения числа Ре = цd/v, определяющего границу между ламинарным и турбулентным режимами. Если для круглых труб число Рейнольдса опре-152  [c.152]

В диапазоне чисел Re = 2300-г-4000 осуществляется переход от ламинарного течения к турбулентному. В потоке наблюдается неустойчивость, порождаемая периодическим возникновением очагов турбулентности и их исчезновением.  [c.161]

Решение при ламинарном режиме у стенки показано кривой 1, это решение хорошо согласуется с опытными данными непосредственно у стенки, с удалением от стенки различие между кривой 1 и опытными точками увеличивается. Лучшее соответствие достигается, если часть профиля скорости непосредственно у стенки описывать формулой (1.85), часть, удаленную от стенки,—формулой (1.84). В этом случае расчетный профиль скорости, показанный на рис. 1.2 сплошными линиями, содержит точку излома и состоит из двух частей одна соответствует ламинарному режиму течения, вторая — турбулентному. Подобный подход соответствует разделению пристеночного течения на две области ламинарный подслой и турбулентное ядро. В ламинарном подслое течение определяется молекулярным переносом, в турбулентном ядре — молярным (турбулентным) переносом. В этой модели, называемой двухслойной, переход от ламинарного подслоя к турбулентному ядру осуществляется скачком при некотором значении величины  [c.46]

Вторая задача связана с определением тепловых потоков со стороны горячего газа к обтекаемому профилю типа турбинной лопатки в этом случае в пограничном слое вдоль профиля могут одновременно существовать зоны ламинарного, переходного и турбулентного течений.  [c.55]

Рис. 1.5. Изменение коэффициента трения вдоль пластины в ламинарной, переходной и турбулентной зонах течения Рис. 1.5. <a href="/info/652136">Изменение коэффициента трения</a> вдоль пластины в ламинарной, переходной и турбулентной зонах течения
Рассмотрим интегральный метод решения уравнений турбулентного пограничного слоя. Течение в пограничном слое условно можно разделить на ламинарный подслой и турбулентное ядро. В ламинарном подслое течение определяется молекулярным переносом, в турбулентном ядре — молярным. Ламинарный подслой моделируем течением между параллельными, в общем случае, проницаемыми плоскостями (течением Куэтта). Примеры решения уравнений, описывающих течение Куэтта многокомпонентного газа, приведены в 8.1. В турбулентном ядре решение определяется приближенно с использованием интегральных соотношений (8.51). .. (8.53). При турбулентном течении вдоль непроницаемой пластины обычно применяется универсальный степенной профиль скорости  [c.286]

Теплообмен в ламинарной переходной и турбулентной зонах течения 265 Теплосодержание компонента 20  [c.314]

Локальные и интегральные характеристики пограничного слоя существенно зависят от режима течения жидкости в пограничном слое, является ли это течение ламинарным или турбулентным. Весьма важным является умение управлять развитием пограничного слоя, процессом перехода ламинарного течения в турбулентное, так как при проектировании летательных аппаратов это позволяет в зависимости от поставленной задачи оптимизировать их форму, правильно выбирать органы управления и т. п.  [c.670]


Путем отсоса пограничного слоя можно повлиять на переход ламинарного течения в турбулентное. Отсос пограничного слоя внутрь тела позволяет отодвинуть точку перехода вниз по течению и тем самым уменьшить сопротивление трения. При этом увеличение скорости отсасываемой части газа приводит к возрастанию затрат энергии на отсос. По достижении некоторой оптимальной скорости отсоса ламинарное течение становится абсолютно устойчивым и дальнейшее увеличение скорости, а следовательно, затрачиваемой энергии на отсос становится нецелесообразным, так как приводит лишь к снижению эффективности отсоса.  [c.439]

При движении жидкости в изогнутых трубах и змеевиках за счет действия центробежных сил в поперечном сечении возникает вторичная циркуляция, приводящая к сложному течению по винтовой линии (рис. 19.11). Центробежный эффект увеличивает теплоотдачу он наблюдается как при ламинарном, так и турбулентном режимах движения.  [c.303]

На рис. 32.11 представлены результаты экспериментов по изучению теплообмена сверхзвуковой струи и преграды (точки) в форме зависимости Nu,. = /(ReJ, там же для сравнения нанесены линии—законы теплообмена при ламинарном (линия /) и турбулентном (линия 2) режимах течения для стандартных условий.  [c.302]

Рейнольдсом дан метод установления характера течения жидкости не только при помощи такого рода качественных опытов, но также через количественный критерий, пользуясь которым можно заранее предсказать этот характер. Как показали поставленные им опыты, переход ламинарного течения в турбулентное при заданных диаметре трубы, абсолютной вязкости жидкости и ее плотности обусловливается увеличением скорости течения. Однако того же эффекта при заданных скорости, абсолютной вязкости и плотности можно добиться в трубе большего диаметра или при заданных диаметре трубы и скорости  [c.120]

Так, по Шиллеру, потоки в трубах, характеризуемые числами R 2320, текут ламинарно, а потоки, для которых Р 2320, текут турбулентно. Число Рейнольдса, соответствующее переходу ламинарного течения в турбулентное, называют критическим и обозначают  [c.121]

Пограничный слой может быть как ламинарным, так и турбулентным. Переход от одного режима течения к другому определяется размерами тела, интенсивностью увеличения толщины слоя, степенью турбулентности набегающего потока и т. п.  [c.229]

Режим течения в струях может быть как ламинарным, так и турбулентным, однако наибольшее практическое значение имеют турбулентные струи.  [c.327]

При каких значениях критерия Рейнольдса режим течения газа в трубе является ламинарным, переходным и турбулентным  [c.153]

Процесс перехода ламинарного течения в турбулентное весьма сложен и в настоящее время еще недостаточно изучен.  [c.357]

Опыты по изучению механизма перехода ламинарного течения в турбулентное в трубах и в пограничном слое обнаруживают много общего. Общность эта находит свое отражение в одинаковости количественных критериев перехода число Кекр имеет примерно один и тот же порядок для трубы и для пограничного слоя на пластине, если производить сравнение в сопоставимых категориях. При этом радиус трубы го=й12 соответствует толщине пограничного слоя б, а скорость на оси трубы, вдвое превышающая среднюю тта.х=2ги), — скорости внешнего потока хшо. Для пограничного слоя соответствующее число Рейнольдса определяется следующим выражением  [c.358]

Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности. При движении жидкости вдоль плоской поверхности профиль распределения продольной скорости поперек потока изменяется по мере удаления от передней кромки пластины. Если скорость в ядре потока и о, то основное изменение ее происходит в пограничном слое толщиной б, где скорость уменьщается от vvo до и,. = О на поверхности пластины. Течение в пограничном слое может быть как ламинарным, так и турбулентным. Режим течения определяется критическим значением критерия Рейнольдса, нижний предел которого для ламинарного пограничного слоя равен Re p = 8 Ю , а при Re > 3 10 вдоль пластины устанавливается устойчивый турбулентный режим течения. При значениях 8 10 < Re < 3 10 режим течения — переходный (рис. 2.30).  [c.170]

В качестве А мы можем подставить массу, тепло или количество движения. Коэффициенты диффузии К зависят от режима течения жидкости. Существуют два режима течения жидкости ламинарное течение и турбулентное течение. Мы будем обсуждать их различия более детально в гл. 8. Здесь мы только отметим, что если поток движется ламинарно, без макроскопического пере-мещивания, то процессы переноса имеют место лишь благодаря молекулярному перемещиванию (диффузии). Если, с другой стороны, имеют место турбулентное движение и, следовательно, турбулентное перемешивание жидких частиц, то процессы переноса будут осуществляться также и благодаря турбулентной диффузии. Мы будем обсуждать перенос в условиях турбулентности в последующих главах. Здесь же мы последовательно рассмотрим несколько молекулярных диффузионных процессов, связанных между собой аналогией указанного выше характера.  [c.67]

Рисунок 1.21 - Ламинарное (а) и турбулентное (б) течение жидкости (вихрь -элемент диссипативной струк1уры) Рисунок 1.21 - Ламинарное (а) и турбулентное (б) <a href="/info/204319">течение жидкости</a> (вихрь -элемент диссипативной струк1уры)

Разнообразие волновых структур в активных средах проявляется и в сложных структурах конденсированных сред. Следует прежде всего рассмотреть аналогию волновой картины пластической деформации при упругопластическом переходе в вихреобразования в движущейся трубе жидкости при переходе от ламинарного течения к турбулентному. Этому неравновесному фазовому переходу отвечает критическое число Рейнольдса. С другой стороны, переход от упругой деформации (апало1- ламинарного течения) также является неравновесным фазовым переходом, возникающем в результате потери упругой устойчивости деформируемой конденсированной среды, проявляющаяся на различных масштабных уровнях. В обоих случаях переход структуры из одного устойчивого состояния в дру1ое сопровождается порождением aBTOBOjni, как способа диссипации энергии средой в критических точках (см. главу 1).  [c.254]

Число Рейнольдса является определяющим параметром не только для количественных характеристик пограничного слоя, но и для самого характера течения. При небольших числах Рейнольдса движение частиц газа имеет упорядоченный слоистый характер, такое течение называется ламинарным. При больших числах Рейнольдса движение частиц газа становится беспорядочным, возникают неравномерные пульсации скорости в продольном и поперечном направлениях, такое течение называется турбулентным. Переход ламинарного течения в турбулентное происходит при определенном значении числа Рейнольдса, называемом критическим. Критическое число Рейнольдса не постоянно и в очень сильной степени зависит от величины начальных возмущений, т. е. от интенсивности турбулентности на-бегагощего потока.  [c.281]

Кроме конфигурации граничных поверхностей необходимо учитывать влияние режимов движения жидкости па величину и механизм, потерь. Как известно из гл. 2 и 5, кинематические структуры ламинарного ji турбулентного потоков различны турбулентные пулбсащш "Гпорождают добавочные касательные напряжения, которые вызывают увеличение потерь энергии в турбулентных потоках по сравнению с ламинарными при сопоставимых условиях. Для оценки потерь важно знать условия перехода ламинарного течения в турбулентное. Этот вопрос рассмотрен в п. 6.6. Здесь укажем только на классический опыт О. Рейнольдса, который, наблюдая поведение подкрашенных струек жидкости в стеклянной трубке, установил сугцествование критического значения числа Re =-- vdh, определяющего границу между ламинарным и турбулентным режимами. Если для круглых труб число Рейнольдса определять по формуле Re = vdiv (где а — средняя скорость потока d—диаметр трубы), то, как показали опыты О. Рейнольдса и других исследователей, при Re < Re p = = 2300 наблюдается устойчивый ламинарный режим, при Re >  [c.140]

При выводе уравнений Навье—Стокса не делалось каких-либо предположений о режиме движения. Поскольку свойство вязкости присуще реальным жидкостям независимо от режима их движения и при переходе от ламинарного течения к турбулентному другие физические свойства не изменяются, можно предполагать, что обобщенная гипотеза Ньютона, а значит и опирающиеся на нее уравнения Навье—Стокса, справедливы как при ламинарном, так и при турбулентном движении жидкости. Однако в последнем случае использовать уравнения Навье—Стокса для получения каких-либо прикладных решений практически невозможно. Входящие в них мгновенные скорости и давление при турбулентных режимах являются пульсирующими величинами. Даже если бы эти параметры удалось найти путем решения уравнений Навье—Стокса, что представляет крайне трудную задачу, то использовать эти мгновенные значения величин в практических целях было бы весьма затруднительно. Поэтому для турбулентного режима ставится задача отыскания усредненных во времени скоростей и давлений. Эти усредненные величины сами могут оказаться зависящими или независящими от времени. В первом случае турбулентнсе течение считается неустановившимся, а во втором — установившимся. -  [c.96]

Описанный в этом параграфе характер течения и соответствующие ему зависимости имеют место только при устойчивом ламинарном режиме, т. е. при Re < Re p. При значениях Re > R kp возможно нарушение ламинарного характера течения и возникновение турбулентности. Механизм перехода от ламинарного течения к турбулентному достаточно сложен и, несмотря на многочисленные исследования, выяснен не полностью. Тем не менее можно дать хотя и схематичное, но достаточно близкое к реальной картине описание движения при околокритических числах Re, Так, при числах Re, немного меньших Квкр, в ламинарном потоке периодически появляются кратковременные очаги турбулентности, которые могут на отдельных участках заполнять все сечение потока, образуя турбулентные пробки . Этот переходный процесс можно характеризовать долей А/ некоторого интервала времени Т, в течение которой в данной точке потока существует турбулентный режим. Величину у = At/T называют коэффициентом перемежаемости. По мере возрастания числа Рейнольдса, а также при удалении от входа в трубу величина у непрерывно возрастает.  [c.167]

Течение в пограничном слое может быть как ламинарным, так и турбулентным. В этой глазе расс.мотрим только ламинарный пограничный слой, теория которого основана на упрощенных уравнениях Навье—Стокса. Чтобы подойти к обоснованию предпосылок, позволяющих произвести эти упрощения, рассмотрим основные черты типичных случаев образования пограничного слоя.  [c.357]

Рассмотрим также теплообмен на профиле турбинной лопатки при наличии зон ламинарного, переходного и турбулентного течения. Расчет выполняется при использовании уравнений (1.127) с дополнительными условиями по переходу (1.128). Расчетные и опытные значения числа Нуссельта на турбинном профиле показаны на рис. 7.16 для двух чисел Рейнольдса (Rej = рыас/м., 2 — скорость на выходе из решетки с — хорда лопатки). Результаты приведены для выпуклой стороны профиля. При меньшем числе Re (Rea = 1,84.10 ) пограничный слой остается ламинарным вплоть до точки отрыва (при х1с = 0,86), расчетное местоположение которой согласуется с опытным (в точке отрыва пограничного слоя трение на стенке становится равным нулю). При большем числе Re (Re = 6,75.10 ) отрыв  [c.265]

Если скорость движения жидкости больше то ламинарное движение разрушается и переходит в новый вид движения, для которого характерно поперечное относительно основного потока перемещение частиц, что вызывает перемешивание жидкости. Упорядоченное слоистое течение исчезает, переходя в турбулентное. А лекулярное хаотическое движение характерно для ламинарного течения в турбулентном потоке происходит перемешивание макроскопических частиц. Это течение имеет неустановиБшийся характер, при котором скорость и другие параметры в данной точке изменяются во времени. Наличие интенсивного перемешивания потока при турбулентном течении приводит к появлению дополнительных тангенциальных напряжений в жидкости, к более интенсивному переносу в ней вещества и теплоты.  [c.18]

На графике на рис. 111 представлена зависимость ф от соотношения между диаметрами магистрали и параллельной трубыдля различных режимов течений и законов сопротивления (/ — ламинарное течение, 2 — турбулентное течение в гладких трубах, 5 — турбулентное течение в шероховатых трубах) очевидно, что при di = d независимо от характера течения ф = 0,5, т. е.  [c.208]



Смотреть страницы где упоминается термин Ламинарное течение и турбулентность : [c.167]    [c.220]    [c.147]    [c.61]    [c.195]    [c.232]   
Смотреть главы в:

Распространение и рассеяние волн в случайно-неоднородных средах  -> Ламинарное течение и турбулентность



ПОИСК



Ламинарное и турбулентное течение

Ламинарное те—иве

Течение ламинарное

Течение турбулентное



© 2025 Mash-xxl.info Реклама на сайте