Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминиевый Структура

H i рис. 450 приведены типичные микроструктуры алюминиевых бронз. Структура на рис. 450,а соответствует медленному охлаждению с температуры выше критической. Структура получается доэвтектоидной и состоит из кристаллов а (светлые) и эвтектоида а+у (темные). Мартенситная структура алюминиевой бронзы (рис. 450, б) получена в результате закалки в воде с  [c.616]

Алюминиевые бронзы. Алюминиевые бронзы содержат обычно не более 9—10% А1. При таком содержании алюминия бронзы имеют однофазную структуру. Иногда в них вводят также небольшие количества Ре, Мп, N1.  [c.250]


Для упрочнения алюминиевых сплавов применяют закалку и старение, Для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, применяют отжиг.  [c.322]

Алюминиевые антифрикционные сплавы. В табл. 31 приведены примеры алюминиевых сплавов для изготовления подшипников. Основными компонентами сплавов являются Sn, Си, Ni и Si, образующие с алюминием гетерогенные структуры.  [c.359]

Рассмотрим изменение структуры при термической обработке у алюминиевых сплавов А1—Си (рис. 18.5) в связи с изменением растворимости химического соединения СпАР в А1.  [c.322]

ДИНАМИЧЕСКАЯ СТРУКТУРА И СВОЙСТВА АЛЮМИНИЕВЫХ СПЛАВОВ. ФОРМИРУЕМЫЕ В МНОГОЭТАПНЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ  [c.27]

На основе концепции предложены режимы этапов получения изделий из алюминиевых сплавов кристаллизации, гомогенизации, деформационной обработки и окончательной термической обработки. Разработанные режимы положены в основу экономичных вариантов технологических процессов, обеспечивающих улучшение динамической и конечной структуры и уровня свойств изделий.  [c.28]

СТРУКТУРА И СВОЙСТВА АЛЮМИНИЕВЫХ СПЛАВОВ ДЛЯ две, ПОЛУЧЕННЫХ ПУТЕМ ЛИТЬЯ с КРИСТАЛЛИЗАЦИЕЙ ПОД ДАВЛЕНИЕМ  [c.98]

По конструкции водоохлаждаемые холодильники могут быть различными. Рубашку изготавливают из меди и по ней циркулирует вода, охлаждая отливки с торца лопатки. Отливки (лопатки) можно охлаждать в растворах солей или цветных металлов (алюминиевого, цинкового сплава), для чего форму после заливки опускают в расплав с определенной скоростью. Последний метод, благодаря его удобству и простоте, широко применяется при производстве лопаток с регулируемой структурой.  [c.160]

Такой же критерий (соотношение между размером неоднородностей и длиной волны) определяет роль макроскопических неоднородностей. Если сплошное тело (помимо неоднородностей, обусловленных атомной структурой, которые можно не учитывать) макроскопически неоднородно, например, упругий стержень составлен из сильно прижатых друг к другу чередующихся одинаковых латунных и алюминиевых цилиндров ), то для нормальных колебаний, соответствующих волнам, длина которых значительно превышает высоту одного цилиндра, стержень можно рассматривать как однородный, обладающий средней плотностью и средней упругостью. При расчете же нормальных колебаний, длина волны которых сравнима с высотой цилиндра, необходимо учитывать неоднородность стержня. При наличии неоднородностей решение задачи о колебаниях сплошных систем настолько усложняется, что удается рассмотреть только самые простые случаи, например системы с малой неоднородностью или очень плавно меняющимися вдоль длины системы свойствами.  [c.697]


Одним из крупных недостатков широко распространенной технологии получения прессованных изделий из многих алюминиевых сплавов является то, что при нагреве под закалку деформированных изделий в них образуется очень неоднородная микроструктура. В отдельных микрообластях, где облегчена рекристаллизация, возникает очень крупнозернистая структура. В прессованных изделиях она, как правило, образуется на периферии (так называемый крупнокристаллический ободок ).  [c.375]

Рис. 206. Влияние условий горячей деформации на структуру алюминиевых сплавов Рис. 206. Влияние условий <a href="/info/113004">горячей деформации</a> на структуру алюминиевых сплавов
Как и при литье алюминиевых и медных сплавов, давление препятствует возникновению развитой дендритной структуры (при давлении 6—8 МН/м ).  [c.65]

Исследование структуры слитков из алюминиевых сплавов, затвердевших под поршневым давлением, привело к таким же результатам, что и для сплавов на основе меди. При воздействии давления измельчается структура не только твердого раствора, но и других фаз.  [c.114]

Приложение механического давления во время кристаллизации приводит к измельчению структуры алюминиевых сплавов.  [c.119]

Влияние перегрева на структуру и свойства алюминиевых сплавов при обычных условиях литья достаточно хорошо изучено. При исследовании влияния перегре-  [c.125]

Железо измельчает структуру, задерживает фазовую перекристаллизацию алюминиевых бронз, предотвращая тем самым явление самопроизвольного отжига при литье, заключающееся в образовании крупнозернистой хрупкой у-фа-зы. Железо повышает прочность, твердость и антифрикционные свойства этих бронз.  [c.218]

На рис. 412 представлена структура отожженного сплава А1 7 4% Си. На фоне алюминиевого твердого раствора (почти чистого алюминия) видны включения uAli). На рис. 413 приведена микроструктура того же сплава после закалки. Структура состоит из гомогенного твердого раствора. Нагрев до температуры закалки привел к полному растворению включе-  [c.570]

После закалки с оптимальных температур (500°С) основное количество соединений СиА1г и Mg2Si растворяется в алюминии, но соединения железа не растворяются. Поэтому в закаленном состоянии структура состоит из алюминиевого твердого раствора и нерастворимых включений соединений железа (на микроструктуре рис. 426,6 включения черного цвета).  [c.584]

Термическая обработка алюминиевых литых сплавов, по сравнению с деформированными, имеет ряд особенностей, что объясняется различием в химическом составе, а также тем, что у литых сплавов структура более груоая и крупнозернистая, чем у деформированных.  [c.590]

В последнее время значительно возрос объем ирнмеиенпя так называемых компактных конструкционных материалов, получаемых из порон1Ков самых различных металлов н сплавов. В связи с высокой плотностью механические свойства их практически не снижаются, а отдельные эксплуатационные свойства значительно увеличиваются. Например, спеченный алюминиевый порошок (САП) в своем составе содержит до 15% оксидов алюминия, которые в виде топкой пленки покрывают зерна алюминия и образуют в спеченном материале непрерывный каркас. Такая структура придает материалу высокую теплостойкость. Этот материал может длительное время работать при температурах до 600 °С. САП по сравнению с обычным алюминием имеет более низкий температурный коэффициент. Применяют САП для изготовления компрессорных лопаток, поршней, колец для газовых турбин и т. д. Перспективно прнмененгге компактных конструкционных материалов в условиях крупносерийного и массового производствах деталей сложной конфигурации небольших размеров.  [c.421]

Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% Si, Мп и Fe, ост. AI), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения uAla в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях uAla и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений uAla, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла.  [c.420]


Алюминиевые бронзы. Наиболее часто применяют алюминиевые бронзы, двойные (БрА5 и БрА7) и добавочно легированные никелем, марганцем, железом и др. Эти бронзы используют для различных втулок, направляющих седел, фланцев, шестерен и других небольших ответственных деталей. На рис. 172 приведена диаграмма состояния Си—А1. Сплавы, содержащие до 9,0 % А1, —однофазные и состоят только из а-твердого раствора алюминия в меди. Фаза 3 представляет твердый раствор иа базе электронного соединения Си ,Л1 (3/2). При содержании более 9 % А1 (в структуре появляется эвтектоид а -f у (у — электронное соединение ug Ali,,). При ускоренном охла>кд,е-нии эвтектоид может наблюдаться в сплавах, содержащих 6—8 % А1. Фаза а пластична, но прочность ее невелика, у -фазн обладает повышенной твердостью, но пластичность ее крайне незначительная.  [c.351]

Наиболее перспективными считают алюминиево-оловянные антифрикционные сплавы, обладающие высокими антифрикционными свойствами и сопротивлением усталости. Применяют сплавы А09-2 (9 % олова, 2 % меди, заготовки— литье, монометалл), А09-2Б (литье, биметалл), А09-1 и А020-1 (прокат, биметалл). Эти сплавы обеспечивают оптимальную структуру и способны в режимах масляного голодания образовывать на поверхностях цапф защитную пленку из олова. Например, сплавы A09-I и А09-2 успешно применяют в подшипниках двигателей внутреннего сгорания тепловозов, судов, тяжелых тракторов.  [c.379]

Диод селеновый — АЛОА поликристаллической структуры из селена, нанесенного на алюминиевую пластину обратное пробивное напряжение 30—35 В при длительном хранении теряет выпрямительные свойства, которые восстанавливаются при тренировке [4].  [c.143]

При реализации многоэтапных технологических процессов получения и обработки заготовок и изделий дисперсионво-твердеющие алюминиевые сплавы следует рассматрисать как объекты, последовательно воспринимающие многопарпметрические внешние воздействия и относящиеся к сложным многофакторным динамическим трансформационным системам с изменяющимися во времени параметрами состояния, внешними воздействиями, степенью неравновесной структуры.  [c.27]

Кроме того, в последние годы успешно прошла испытания в пресс-формах литья под давлением алюминиевых сплавов коррозионностойкая сталь 2Х9В6, разработанная Московским станкоинструментальным институтом. Опробование этой стали на московском заводе "Изолит показало ее значительные преимущества по стойкости перед сталью ЗХ2В8Ф. Испытание этой стали на разгаро-стойкость путем термоциклирования образцов подтвердило перспективность ее применения. В настоящее время в США и Германии сталь марок Н-13 и 2344 получают улучшенного качества. Эта сталь имеет повышенную вязкость, а также более высокое сопротивление термическому удару за счет повышенной чистоты слитка, идеальной проковки, которая дает плотную однородную структуру.  [c.58]

Коэффициент теплопроводности жидкого алюминиевого сплава по сравнению с магнезитом в 10 раз больше. Схема установки высокоскоростной направленной кристаллизации (ВНК) для получения лопаток с монокристаллической структурой показана на рис. 213. При этом интенсивность процесса теплообмена формы (Уф) должна соответствовать скорости кристаллизации отливки vq, т.е. скорость переохлаждения должна быть постоянной (At = onst).  [c.428]

Коэффициент затухания 5 в значительной степени зависит от отношения средней величины зерна d в металле и длины акустической волны X. Чем больше отношете к/d, тем меньше коэффициент затухания. Коэффициент затухания обратно пропорционален частоте/(так как к = С//). Короткие волны большой частоты легко затухают, отражаясь от границ зерен кристаллов. Для малоуглеродистых сталей X/d > 10, затухание мало и возможно применение ультразвуковых волн для контроля. При k/(i< 10 затухание происходит наиболее интенсивно. В деталях, выполненных электро-шлаковой сваркой, в сварных соединениях из аустенитиых сталей, меди, чугуна, где структура крупнозер1шстая, ультразвуковой контроль затруднен, так как длина волны сопоставима с величиной среднего зерна. В алюминиевых и титановых сплавах контроль УЗК не вызывает затруднений.  [c.170]

Алюминиевые антифрикционные сплавы. Основными компонентами сплавов являются 8п, Си, № и 81, образующие с А1 гетерогенные структуры. Сплавы АОЗ-1 и А09-2 (8п -- 9%, Си 2%) применяют для отливки монометаллических вкладышей и втулок толщиной более 10 мм. Сплавы АО20-1, АН2,5 (N1 2,5%) - для получения биметаллической ленты со сталью методом прокатки. Подшипники из сплава АН2,5 можно изготовить и отливкой. Подшипники работают при нагрузке не более 200...300 МПа и окружной скорости 15...20 м/с.  [c.124]

Баббиты - это мягкие антифрикционные сплавы на оловянной, свинцовой, алюминиевой и цинковой основах, в которых равномерно распределены твердые кристаллы (кристаллы - фазы SnSb или кристаллы сурьмы, иглы меди). Баббиты отличаются низкой твердостью (13-23 НВ), невысокой температурой плавления (340-500°С, алюминиевые бронзы - 630-750°С), отлично прирабатываются и имеют низкий коэффициент трения со сталью, хорошо удерживают фаничную масляную пленку. Мягкая и пластичная основа баббита при трении в подшипнике изнашивается бь[стрее, чем вкрапленные в нее твердые кристаллы других фаз, в результате шейка вала при вращении скользит по этим твердым кристаллам. При этом уменьшается площадь фактического касания трущихся поверхностей, что, в свою очередь, снижает коэффициент трения и облегчает поступление смазки в зону трения. Благодаря хорошей прирабатываемости баббитов все неточности поверхностей трения вследствие механической обработки или установки деталей при сборке в процессе обкатки подшипников быстро устраняются. В табл. 1.6 приведены основные свойства и структура баббитов.  [c.22]

Алюминиевые бронзы с 0нтимальт> ми свойствами содержат 3-8%. алюминия. Увеличение содержания алюминия до 10-11% ведет к значительному повышению прочности и понижению пластичности вследствие появления в структуре 7-фазы.  [c.24]


Пластическая деформация при температуре ниже температуры рекристаллизации приводит к наклепу поверхностного слоя - его упрочнению, при котором кристаллы сильно деформируются и поворачиваются осями наиболыпей прочности вдоль направления деформации, т е. в направлении скольжения. В то же время у самой поверхности структура несколько ослаблена, микротвердость у поверхности также снижается, увеличиваясь по мере удаления от поверхности и достигая максимума на некоторой глубине. На рис. 4.4 приведены экспериментальные данные но изменению микротвердости, полученные при испытании алюминиевого сплава В95 в паре с композиционным материалом на основе политетрафторэтилена.  [c.85]

Известно, что в процессе приработки металлополимерных сопряжений на металлическом контртеле образуется пленка фрикционного переноса, состав, структура и свойства которой имеют определяющее значение в механизме трения и изнашивания сопряжения. Рассмотрим изменение структурно-фазового состава пленки фрикционного переноса в процессе длительного (до 52 часов) трения. Контртело в виде плоского диска изготавливали из алюминиевого сплава В95, содержащего в качестве легируюи их добавок магний, медь, цинк в количествах от 2 до 6%. Обработка рентгенограмм, снятых после 12, 20 и 32 часов трения, показала, что пленка фрикционного переноса, кроме фторопласта-4, содержит медь и что при этом в полимерной матрице нет кристаллических областей. С увеличением продолжительности трения  [c.99]

Благоприятное действие дооавок кремния и титана на коррозионную стойкость алюминиевых покрытий на стали заключается в появлении новой, отличной от чистого алюминия структуре. В алюминиевом сплаве, начиная от содержания 0,6 % кремния, фиксируются две структурные составляющие, из которых ок >аза имеет электродный потенциал, близкий к чистому алюминию, тогда как 3-фаза катодна по отношению к алюминию и потенциал ее близок к потенциалу чистого кремния (-0,66 В). Вследствие этого подобные покрытия можно рассматривать как алюминиевые с катодной добавкой, что подтверждается характером изменения стационарного потенциала с ростом содержания кремния. С увеличением плотности тока на анодных участках и степени облагораживания потенциала облегчается возможность перехода анодных участков в пассивное состояние.  [c.94]

Уменьшить время выдержки Тд можно за счет повышения скорости внедрения пуансона в расплав. Однако при скорости, равной 0,6—0,8 м/с, возникает вихревое движение металла в прессформе, происходит захват воздуха, выбрызгивание расплава в зазор между матрицей и пуансоном, могут возникнуть трещины на внутренней поверхности отливки. Поэтому рекомендуемые значения скорости находятся в пределах 0,08—0,2 м/с. Для каждого сплава характерны определенные значения скорости внедрения пуансона, обеспечивающие достижение наиболее благоприятного сочетания структуры и механических свойств. Для сталей они меньше, для алюминиевых сплавов больше.  [c.85]

Рассмотрены теория упрочнения литейных алюм.иниевых сплавов, влияние комплексного легирования на структуру и свойства литейных алюминиевых сплавов различных систем. Представлены результаты исследования механических и технологических свойств современных сплавов, описаны режимы технологической обработки отливок из них. Дано технико-экономическое обоснование преимуществ применения литых деталей по сравнению с использованием механической обработки деформированных полуфабрикатов.  [c.47]

Эхо-метод применяют для обнаружения грубых дефектов в слитках из различных металлов и сплавов, предназначенных для изготовления ответственных изделий. Простая форма слитка благоприятствует контролю. Однако слитки имеют крупнозернистую структуру, что требует снижения частоты и снижает чувствительность метода контроля. Слитки из углеродистой стали могут быть прозвучены на толш,ину до 1 мм при частоте 0,25— 1 МГц. Слитки из легированной стали прозвучиваются значительно хуже. Слитки из титановых и алюминиевых сплавов могут быть проконтролированы на глубину более 1 м при частоте 1 —1,5 МГц. Для обеспечения акустического контакта вдоль боковых поверхностей слитка зачищают полосы шириной 50—70 мм от окалины и других неровностей.  [c.256]


Смотреть страницы где упоминается термин Алюминиевый Структура : [c.591]    [c.374]    [c.132]    [c.98]    [c.98]    [c.82]    [c.386]    [c.133]    [c.25]    [c.66]    [c.66]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.211 , c.214 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте