Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон производительности

Законы производительности рабочих машин. — Социалистическая реконструкция и наука, 1933, № 10.  [c.119]

Это и есть основной закон производительности машин. Из него следует, что для повышения выпуска продукции нужно уменьшать и холостое, и рабочее время.  [c.92]

Это объясняется тем, что в основу всех автоматов положены цикличность их работы и автоматизация рабочих и холостых движений. Общие законы производительности, агрегатирования,, построение технологического процесса, общие элементы структуры и кинематики для всех автоматов обусловливают и общность конструктивных форм и методов расчета автоматов различного технологического назначения.  [c.21]


Производительность средств производства является решающим фактором повышения производительности труда, поэтому особое значение приобретает изучение законов производительности рабочих машин и автоматических линий.  [c.77]

ЗАКОН ПРОИЗВОДИТЕЛЬНОСТИ РАБОЧИХ МАШИН  [c.78]

Очевидно, вместо серии весьма дорогих и сложных экспериментов, в которых трудно учесть влияние на производительность каждого фактора в отдельности, для определения правильных режимов работы можно эту задачу решить аналитически, на основе законов производительности рабочих машин.  [c.160]

ЗАКОН ПРОИЗВОДИТЕЛЬНОСТИ И ПРОБЛЕМЫ КОМПЛЕКСНОЙ АВТОМАТИЗАЦИИ  [c.379]

Данная обобщенная формула отражает объективно действующий закон производительности машин, который выражает зависимость производительности любой машины от степени интенсификации ее рабочего процесса и возникающих при этом потерь.  [c.381]

Это обстоятельство не является случайным. Общие законы производительности, законы агрегатирования, построение технологического процесса, общие элементы структуры и кинематики для всех автоматов и автоматических систем машин обусловливают и общность конструктивных форм и методов их расчета.  [c.21]

Данная обобщенная формула отражает объективно действующий закон производительности машин и агрегатов, который формулируется следующим образом.  [c.33]

Данная обобщенная формула отражает объективно действующий закон производительности машин и агрегатов, который формулируется следующим образом повышение производительности рабочих машин и агрегатов заключается в том, что интенсифицируются процессы обработки и одновременно сокращаются все потери, в том числе и порождаемые самой интенсификацией.  [c.54]

Если не опираться на теоретические основы процесса резания металлов, то невозможно ни спроектировать научно обоснованный технологический процесс, ни дать оценку его эффективности. Производительность и себестоимость технологического процесса определяются временем, которое затрачивается на выполнение отдельных операций, и зависит от установленных на них режимов резания. Сознательное назначение режима резания невозможно без знания основных законов производительного резания, базирующихся на процессах, происходящих в зоне деформации и на контактных поверхностях инструмента. Качество выпускаемых деталей определяется точностью их геометрических форм и шероховатостью обработанной поверхности. При определенной жесткости детали макрогеометрические погрешности формы зависят от величины и направления сил, действующих в процессе обработки. Таким образом, при точностных расчетах, базирующихся на жесткости технологической системы СПИД (станок — приспособление — инструмент — деталь), нужно уметь определять силы резания и знать, от чего зависят их величины и направления действия. Погрешности формы детали, вызванные разогреванием детали и инструмента, можно рассчитать, зная температуру детали и инструмента, для чего необходимо иметь сведения о тепловых явлениях, сопутствующих превращению срезаемого слоя в стружку. Надежность функционирования технологического процесса определяется возможными отказами по точности обработки и стойкости инструмента. Анализ возникновения отказов и установление путей их устранения возможны на основании изучения характера изнашивания инструментов и статистической теории их стойкости.  [c.4]


Развитие современно науки и техники неразрывно связано с созданием новых машин, повышающих производительность и облегчающих труд людей, а также обеспечивающих средства исследования законов природы и жизни человека.  [c.11]

Понятие машина может быть в обобщенном виде выражено следующим образом машина есть устройство, создаваемое человеком для изучения и использования законов природы с целью облегчения физического и умственного труда, увеличения его производительности и облегчения путем частичной или полной замены человека в его трудовых и физиологических функциях.  [c.11]

Сложность — свойство объектов, заключающееся в том, что функция, реализуемая объектом, не может быть представлена в виде композиции функций, реализуемых элементами объекта. Например, при структурном синтезе ЭВМ рассматривается как система, состоящая из взаимосвязанных функциональных блоков и узлов, организованных таким образом, чтобы их функционирование приводило к реализации заданных функций — вычислениям на основе алгоритмов. Одни и те же функции могут быть реализованы различными структурами, обеспечивающими производительность решения задач при различных затратах оборудования. Закон функционирования ЭВМ невозможно рассмотреть только с точки зрения электрических процессов, происходящих в цепях ЭВМ. Функции ЭВМ выявляются лишь при рассмотрении процессов в ЭВМ в информационном и алгоритмическом аспектах. Это объясняется эффектом организации, порождающим в совокупностях элементов новые свойства.  [c.305]

Из предыдущего вытекают следующие выводы. Размерно-подобные ряды надо строить на основе главных характеристик (мощности, производительности и т. д.), а не геометрических параметров, так как в силу внутренних законов подобия главные характеристики располагаются по закономерности, отличной от закономерности изменения геометрических характеристик. Последние получаются как производные.  [c.57]

Механика, подобно геометрии, получила свое начало в глубокой древности под влиянием запросов практики ее развитие неразрывно связано с развитием производительных сил общества. При постройке громадных сооружений, развалины которых сохранились, до наших дней, постепенно накапливался опыт, обобщение которого привело к знанию некоторых законов механики это давало возможность строить различные машины, употреблявшиеся для строительных и военных целей.  [c.10]

Выбор закона движения рабочего хода определяется требованиями технологического процесса, а обратного хода — производительностью машины и динамикой самого механизма. На практике обычно используют типовые законы движения, которые удовлетворяют кинематическим и динамическим требованиям и обеспечивают простую технологию изготовления профиля кулачка.  [c.291]

Теоретическая механика имеет свою историю становления законов и понятий. Она создавалась вместе с развитием техники под непосредственным влиянием развития производительных сил общества и всей человеческой культуры Теоретическая механика берет свое начало в глубокой древности, задолго до нашей эры.  [c.5]

Роль динамического расчета очень велика при проектировании или исследовании механизма. Только динамический расчет выявляет истинную картину взаимодействия звеньев механизма и законов их движения. Почти всегда, особенно в скоростных машинах, картина силового взаимодействия звеньев механизмов резко различается при оценке схемы статическими и динамическими методами. Если механизм, входящий в какой-либо агрегат, спроектирован без учета динамических факторов, то его надежность будет низкой, снизится точность и производительность работы агрегата, так как при проектировании не учитывалась реальная картина силового взаимодействия звеньев.  [c.279]

С машинами связано все развитие современной техники и промышленности. Машина — это устройство, создаваемое человеком для использования законов природы с целью увеличения производительности физического труда и его облегчения путем частичной или полной замены человека в его трудовых функциях.  [c.183]

Термодинамика возникла из потребностей теплотехники . Развитие производительных сил стимулировало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. французским физиком, инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения , устанавливающим основные положения материализма. Закон сохранения и превращения энергии имеет как количественную, так и качественную стороны. Количественная сторона закона сохранения и превращения энергии состоит в утверждении, что энергия системы является однозначной функцией ее состояния и при любых процессах в изолированной системе сохраняется, превращаясь лишь в строго определенном количественном соотношении эквивалентности из  [c.10]


Фазовые переходы первого рода можно наблюдать иногда и при транспортировке природного газа, когда при изменении давления и температуры газа вдоль трубопровода выпадает конденсат, что снижает производительность газопровода, увеличивает мощность на перекачку газа и т. д. Поэтому умение определять состояние газа по газопроводу представляет большой практический интерес, и решение этой задачи полностью базируется на законах и положениях термодинамики.  [c.96]

Машина есть устройство, создаваемое человеком для изучения и использования законов природы с целью облегчения физического и умственного труда, увеличения его производительности и облегчения путем частичной или полной замены человека в его трудовых и физиологических функциях.  [c.171]

Выбор закона движения для периода рабочего хода диктуется (главным образом) требованиями осуществляемого технологического процесса. Для периода холостого хода выбор закона движения определяется динамикой проектируемого механизма и производительностью машины.  [c.104]

Получение возможно более высокой производительности механизма также зависит от выбранного закона движения исполнительного звена, ибо осуществление заданного хода  [c.110]

Это уравнение выражает зависимость изменения во времени температуры в некоторой точке тела от свойств поля и производительности источников теплоты в окрестности этой точки, т. е. устанавливает связь между пространственными и временными изменениями температуры. Решая уравнение теплопроводности, можно определить температурное поле в твердом теле. При этом искомая функция Т(х,у,2,с) должна удовлетворять уравнению (2.5) и, следовательно, соответствовать закону сохранения энергии. Однако для получения однозначного решения уравнения (2.5) необходимо выполнение следующих условий  [c.81]

При использовании непрерывного излучения для упрочнения необходимость в разработке таких методов не возникает. В большинстве случаев требуемый сложный профиль или контур может быть яолучен путем сканирования излучения (или, что чаще используется, путем перемещения поверхности детали) по определенному закону. Производительность процесса не зависит от формы пятна, она определяется скоростью относительного перемещения луча и детали, а также сложностью контура.  [c.54]

В отзыве на диссертацию заведующий кафедрой Станки МВТУ профессор Я. М. Хаймович писал Работу Г. А. Шаумяна следует оценить как выдающуюся работу в области машиностроения. В ней впервые даются научные основы создания рабочих машин-автоматов. Даются законы производительности рабочих машин, указываются пути создания (синтеза) высокопроизводительных многонозиционных станков-автоматов и автоматических линий. Одновременно даются законы использования существующего парка станков-автоматов. Эта работа послужит основой для дальнейшего развертывания советского автоматостроения .  [c.49]

Модели СМО должны описывать ироцеееы прохождения заявок через СМО. Состояние системы в каж,цы1 1 момент времени выражается совокупностью переменных (аналогов фазовых переменных), имеющих преимущественно дискретный характер. Так, состояние обслуживающего аппарата описывается переменной V, которая может принимать одно из двух возможных значений — свободен , занят , а также длинами очередей па входах обслуживающего аппарата. Очередей может быть несколько, сели в СМО фигурируют заявки нескольких различных типов (приоритетов). Состояние каждой заявки описывается перемсиион, значениями которой могут быть обслуживание , ожидание . Результатом анализа СМО должны быть значения выходных параметров (типичными выходными параметрами являются производительность СМО, среднее и максимальное времена обслуживания заявок, средние длины очередей и коэффициенты загрузки обслуживающих аппаратов, вероятности обслуживания заявок за время ис выше заданного и т. н.). Исходные данные при моде.тировании выражаются параметрами обслуживающих аппаратов и параметрами источников заявок. Обычно модели обслуживающих аппаратов II источников заявок представляют собой законы распределения таких величин, как время обслуживания  [c.56]

Из технологических или конструктивных соображений некоторые шарнирно-рычажные механизмы должны обладать определенными свойствами, обеспечивающими заданное соотношение прямого и обратного хода выходного звена, движение шатуна по определенному закону, очерчивание некоторыми точками предусмотренных траекторий и т. п. Так, например, с целью повышения производительности необходимо, чтобы скорость холостого хода была больше рабочего, что характеризуется определенной величиной коэффициента изменения средней скорости коромысла йм = ш и/созр (гл. 2).  [c.70]

Исторически термодинамика возникла из потребностей теплотехники. Развитие производительных сил стимулиров.ало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. в первом сочинении по термодинамике французским физиком и инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения .  [c.9]

ГОСТ 7664-61 устанавливает три изучаемые в курсах физики системы механических единиц измерения, различающиеся основными единицами МКС с единицами м, кг, сек МКГСС с единицами м, кгс (кГ), сек и СГС с единицами см, г, сек. Первая из них вошла как часть в СИ и рекомендуется как предпочтительная. Эта система последовательно используется в настоящей книге. В связи с этим необходимо обратить внимание на измерение количества вещества, часто встречающееся в расчетах. Как известно из курса физики, количество вещества в теле измеряется его массой,, (в состоянии покоя) и при пользовании системой МКС выражается в кг. Прибором для определения массы тела служат рычажные весы, исключающие влияние географической широты и высоты места взвешивания, что и соответствует понятию массы. Отсюда такие величины, как количество пара в котле, металла в каком-либо агрегате, производительность котла, вентилятора, расход топлива, пара — все эти величины измеряются массой тел, участвующих в изучаемом явлении, и выражаются в кг. Другое понятие вес , которым широко и неточно пользуются в технических расчетах для измерения количества вещества, здесь будет применяться только для определения силы, действующей на опору (площадку) в силу этого понятие еес лучше заменить более правильным — сила тяжести в системе МКС последняя, как известно, измеряется в ньютонах и вычисляется как произведение массы на ускорение силы тяжести в данном месте (второй закон Ньютона) или определяется при помощи пружинных весов, что менее точно. Единица силы системы МКГСС — кгс (кГ) здесь будет использоваться только в допускаемых ГОСТ внесистемных единицах.  [c.19]



Смотреть страницы где упоминается термин Закон производительности : [c.27]    [c.27]    [c.29]    [c.31]    [c.33]    [c.56]    [c.125]    [c.111]    [c.473]    [c.42]    [c.3]    [c.36]   
Смотреть главы в:

Автоматы и автоматические линии  -> Закон производительности



ПОИСК



Закон производительности и проблемы комплексной автоматизации

Закон производительности рабочих машин

Рост производительности общественного труда и закон минимума трудовых затрат



© 2025 Mash-xxl.info Реклама на сайте