Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлургические процессы в дуге и в сварочной ванне

Металлургические процессы в дуге и в сварочной ванне  [c.57]

МЕТАЛЛУРГИЧЕСКИЕ ПРОЦЕССЫ В ДУГЕ И СВАРОЧНОЙ ВАННЕ  [c.28]

В связи со сложностью решения вопросов разработки электродов для дуговой сварки, вследствие необходимости комплексного решения вопросов о металлургических процессах в системе стержень—покрытие—сварочная ванна, стабильности горения дуги и плавления электродов, отделимости шлака от застывающего металла, а также из-за особенностей самого изготовления электродов (см. III.5), их расчетное проектирование пока невозможно.  [c.168]


Перенос электродного металла при дуговой сварке оказывает определенное влияние на динамические характеристики электрических параметров сварочной дуги, металлургические процессы в сварочной ванне, в значительной мере определяет технологические возможности процесса, его стабильность и устойчивость. Управление переносом (переход от крупнокапельного к мелкокапельному или струйному) осуществляют путем воздействия на величину электромагнитной силы  [c.104]

В США с 1954 г. применяется так называемый Бер-нард-арк-процесс, при котором непокрытый трубчатый электрод, наполненный флюсом, подается сварочны автоматом в дугу, горящую в атмосфере защитного газа (рис. 61). В процессе сварки флюс, поступающий из трубки электрода, расплавляется сварочной дугой и покрывает жидкий металл ванны тонким слоем шлака. Благодаря этому улучшается формирование шва и протекание в нем металлургических процессов. Цель способа, которым в США изготовляют баки для хранения жидкости,— устранить недостатки, свойственные сварке с одной только газовой защитой.  [c.109]

Траектории и схемы перемещения к нца электрода при сварке второго и последующих слоев шва показаны схемами 16, Пб и Ив. Из приведенных схем видно, что сварку каждого последующего слоя шва выполняют в направлении, противоположном предыдущему. Такая последовательность наложения отдельных слоев шва благоприятно -сказывается на процессе сварки (нет непроизводительных перемещений электрода), способствует более полному протеканию металлургических процессов в сварочной ванне благодаря тому, что сварка ведется от более нагретых участков стыка к менее нагретым, которые в свою очередь по мере продвижения дуги подогреваются теплом надвигающейся сварочной дуги и также становятся в достаточной степени нагретыми.  [c.60]

Для металлургических процессов при сварке характерны высокие температуры на отдельных участках дуги, кратковременность пребывания металла в жидком состоянии и быстрое изменение температурного режима. Расплавленный металл электрода или присадочной проволоки переходит в сварочную ванну в виде небольших капель, которые взаимодействуют с газовой фазой и жидким шлаком. Расплавленный слой шлака образуется при плавлении электродного покрытия и защищает металл капли и сварочной ванны от воздействия окружающего воздуха, раскисляет и легирует металл сварочной ванны, в шлаке растворяются вредные примеси. В процессе плавления электродного покрытия наряду с образованием слоя расплавленного шлака выделяются газы, возникающие при разложении газообразующих компонентов покрытия. Реакции между газообразными веществами и жидким металлом протекают быстрее, чем со ш лаком, поэтому действие газовой защиты более интенсивное. Расплавленный металл сварочной ванны взаимодействует также с окружающим ее основным металлом. Поэтому химический состав наплавленного металла может существенно отличаться от химического состава электродов или присадочной проволоки, а металл зоны термического влияния — от исходного состояния основного металла.  [c.18]


Ввиду существенной зависимости взаимодействия фаз от температуры рассмотрим характер изменения температуры металла в процессе сварки. Термические циклы, которые проходят основной и электродный металлы при сварке, неодинаковы. Капли расплавленного электродного металла пролетают через дуговой промежуток или переходят через шлаковую ванну. При этом поверхность их нагревается до высоких температур (при переходе через дуговой промежуток — до температуры кипения металла). Затем капли попадают в сварочную ванну. Основной металл свариваемых кромок подвергается менее интенсивному воздействию дуги или шлаковой ванны, а поэтому меньше перегревается над температурой плавления. Последующее охлаждение попавших в сварочную ванну основного и электродного металлов происходит совместно. В связи с этим металлургические реакции между металлом и шлаком в разных частях сварочной зоны проходят по-разному.  [c.100]

В дуговой электросварке сочетаются элементы металлургических и термических процессов, протекающих в специфических для сварки условиях. Основной металл и электрод плавятся в атмосфере высокой температуры вольтовой дуги, вследствие чего химическая активность перегретого металла и окружающей газовой среды значительно повышаются. Каплеобразный перенос электродного металла в вольтовой дуге способствует развитию контактной реакционной поверхности между перегретым (частично парообразным) металлом и окружающей его газовой средой. При этом некоторые элементы, входящие в состав электродного металла, легко окисляются и частично испаряются (марганец). Высокая концентрированность нагрева и небольшой объём сварочной ванны обусловливают быстрый отвод тепла большой массой холодного основного металла. Кратковременность процесса плавления и последующей кристаллизации затрудняет регулирование химических реакций, дегазацию и удаление неметаллических включений.  [c.303]

Все металлургические процессы при ручной дуговой сварке происходят в электродной капле и сварочной ванне. Капля электродного металла разогрета до большей температуры, чем сварочная ванна, и имеет удельную площадь гораздо большую, поэтому химические реакции в ней идут более интенсивно. Основная проблема, затрудняющая получение прочного и плотного шва, -попадание в металл шва атмосферных газов. Главные среди них кислород, водород, азот. Молекулы или ионы этих газов, попадая на поверхность жидкого металла, прилепляются к ней (адсорбируют), а затем растворяются в металле. Причем чем больше температура жидкого металла, тем больше газа в нем может раствориться. Выделение азота и водорода в сварочной ванне является основной причиной образования пор. Чтобы не допустить газы в металл шва, необходимо предотвратить их контакт с жидким металлом. Шлакообразующие вещества в составе покрытия, расплавляясь, образуют плотный защитный слой вокруг сварочной ванны и капли электродного металла, однако при горении дуги шлак может оттесняться с некоторых мест капли и ванны (причем наиболее разогретых), поэтому необходимо не допускать атмосферные газы в дуговой промежуток. Это возможно при использовании газообразующих веществ в составе покрытия электрода. Вещества типа мрамора или известняка, разлагаясь в дуге, выделяют большое количество окиси или закиси углерода, которые оттесняют воздух от дуги и защищают жидкий металл. Диссоциация соединений углерода и кислорода  [c.113]

При сварке в инертных газах (аргон, гелий) металлургические процессы протекают только между элементами, содержащимися в металле сварочной ванны, так как инертные газы не взаимодействуют с газовыми составляющими столба дуги. Для предотвращения появления пор при сварке в инертных газах в сварочную ванну вводят активные раскислители (марганец, кремний и др.) и добавляют в аргон 10—15 % углекислого газа или 5% кислорода.  [c.19]


Электрод состоит из обмазки (покрытия) и стального стержня. В состав покрытия и стержня вводятся компоненты, обеспечивающие в процессе сварки необходимую металлургическую обработку сварочной ванны. Электродные покрытия во время горения сварочной дуги между электродом и изделием защищают зону сварки от кислорода и азота воздуха, раскисляют и легируют расплавленный металл сварочной ванны, создают устойчивость дугового разряда и обеспечивают заданные механические свойства сварному шву, а также необходимую структуру металла и требуемый химический состав сварного шва.  [c.54]

В 1882 г. русский изобретатель Н. Н. Бенардос предложил способ прочного соединения и разъединения металлов непосредственным действием электрического тока. Он практически осуществил способы сварки и резки металлов электрической дугой угольным электродом. Ему также принадлежит много других важных изобретений в области сварки (спиральношовные трубы, порошковая проволока и др.). Электрическая дуговая сварка получила дальнейшее развитие в работах Н. Г. Славянова. В способе Н. Г. Славянова (1888 г.) в отличие от способа Н. Н. Бенар-доса металлический стержень одновременно является и электродом, и присадочным металлом. Н. Г. Славянов разработал технологические и металлургические основы электродуговой сварки. Он применил флюс для защиты металла сварочной ванны от воздуха, предложил способы наплавки и горячей сварки чугуна, организовал первый в мире электросварочный цех. Н. Н. Бенардос и Н. Г. Славянов положили начало автоматизации сварочных процессов, создав первые устройства для механизированной подачи электрода в дугу.  [c.7]

Металлургические особенности процесса сварки порошковыми проволоками определяют повышенные требования к соблюдению рекомендуемых напряжения дуги и вылета электрода. Если плавление сердечника отстает от плавления оболочки, возможен переход его в сварочную ванну в нерасплавленном состоянии, что вызывает образование пор и неметаллических включений в металле шва.  [c.132]

Сварка под флюсом характерна относительно большими размерами сварочной ванны как по длине, так и по объему. Поэтому в плавильной зоне мы можем условно выделить две области первая область охватывает зону непосредственного горения дуги, она характерна высокой температурой и активным протеканием в ней металлургических процессов.  [c.78]

Установившийся процесс воздействия движущегося высокотемпературного источника нагрева (сварочной дуги) на проплавляемый металл приводит к образованию сварочной ванны (рис. 1.3). В ней одновременно совмещены процессы плавления, металлургической обработки, легирования, переноса вещества и кристаллизации [72, 151]. Объемы металла относительно малы и значительно перегреты по сравнению с температурой начала кристаллизации [39, ИЗ, 115, 126].  [c.13]

Металлургические особенности сварки характеризуются процессами плавления и кристаллизации свариваемых металлов, протекающими в сварочной ванне, во взаимодействии с газами и шлаками. Отличительными особенностями процессов сварки от металлургических процессов, протекающих в плавительных печах, являются высокая температура сварочной дуги, малый объем расплавленного металла, кратковременность пребывания металла в жидком состоянии, быстрое изменение температурного режима. В этих условиях происходит интенсивное окисление элементов металла. Высокая температура сварочной дуги вызывает диссоциацию газов, т.е. распад молекул кислорода, азота и водорода на атомы  [c.35]

ПЕРЕНОС МЕТАЛЛА (при дуговой сварке) — процесс перехода расплавленного электродного металла в сварочную ванну (см. Крупнокапелъный перенос металла, Мелкокапельный перенос металла, Струйный перенос металла). При нагреве металл на конце электрода подплавля-ется, затем оплавившийся слой металла принимает форму капли с образованием у ее основания шейки. Поперечное сечение шейки с течением времени уменьшается. Это приводит к значительному увеличению плотности тока у щейки, вследствие чего капля отрывается от электрода с большой скоростью. Характер плавления и переноса электродного металла оказывает большое влияние на производительность сварки, ход металлургических процессов. От него зависят устойчивость дуги, потери металла, формирование щва и др.  [c.102]

Одной из причин образования пор в наружном шве следует считать наличие поверхностных окислов на свариваемых кромках — окалины и ржавчины, и недостаточную длительность протекания металлургических процессов в сварочной ванне, обусловленных вынужденным уменьшением режима по току и, таким образом, уменьшением времени пребывания расплавленного металла в сварочной ванне во избежание прожога подварочного слоя шва. Ржавчина, как известно, под влиянием тепла дуги превращается в окалину с выделением паров воды. Окалина, в свою очередь взаимодействуя с жидким металлом, вызывает повышенное содержание закиси железа в системе шлак — металл, которое тормозит восстановление кремния и марганца. При достаточном количестве окалины на отдельных участках стыка это способствует интенсификации реакции окисления углерода [С]+[01 = = С0 в кристаллизирующейся части ванны. Выделяющаяся при этом окись углерода, не растворимая в металле, служит причиной образования пор. Пары воды также взаимодействуют с жидким металлом, что приводит вначале к поглощению водорода в высокотемпературной части сварочной ванны, а затем к его выделению из кристаллизирующегося металла шва в виде молекул, не растворимых в металле. Последнее обусловливает образование пор в шве с развитием их до сквозных свищей.  [c.108]


В состав многих покрытий и флюсов вводится плавиковый шпат СаРг, который, разлагаясь при высокой температуре, выделяет фтор ( aFg aF+F). Выше уже отмечалось, что фтор ухудшает условия горения сварочной дуги вследствие большого сродства к электрону. При температуре дуги порядка 6000°К диссоциация фтора достигает очень больших размеров. Однако диссоциированный фтор выполняет весьма важную положительную роль в металлургическом процессе сварочной ванны он связывает водород в молекулы, обладающие высокой стойкостью.  [c.49]

Дуговая сварка плавлением при помощи электрической дуги или других источников тепловой энергии широко распространена благодаря простоте соединения частей металла путем местного расплавления соединяемых поверхностей. Расплавление основного и присадочного металла облегчает их физические контакты, обеспечивает подобно жидкостям смешивание металлов в жидкой сварочной ванне, одновременно удаляя оксиды и другие загрязнения. Происходят металлургическая обработка расплавленного металла и его затвердевание, образуются новые межатомные связи. В кристаллизуемом металле образуется сварной шов (рис. 1.2, в). Свойства сварного шва и соединения в целом регулируются технологией расплавления металла, процессом его обработки и кристаллизации. Взаимная растворимость в л<идком состоянии и образование сварного шва характерны для однородных металлов, например для стали, меди, алюминия и др. Более сложным оказывается соединение разнородных материалов и металлов. Это объясняется большой разницей их физико-химических свойств температуры плавления, теплопроводимости и др., а также несходством атомного строения. Некоторые металлы, например железо и свинец и др., не смешиваются при расплавлении и не образуют сварного соединения другие — железо и медь, железо и, никель, никель и медь хорошо смешиваются при сварке образуют твердые растворы. Для соединения металлов, не поддающихся смешиванию при расплавлении, применяют особые виды сварки и методы ее выполнения.  [c.8]

Особенности металлургических процессов при сварке толстопокрытыми электродами. В общем виде схему процесса сварки толстопокрытым электродом можно представить следующим образом (рис. 15.11). Под действием высокой температуры дугового разряда плавятся электрод и кромки основного металла, образуя сварочную ванну. При плавлении конца электрода, как видно из схемы, нагреваеТ ся и плавится внутренний слой покрытия, которое у конца электрода принимает вид втулки. Шлак тонким слоем покрывает расплавленный металл конца электрода и капли. Несмотря на то, что капли электродного металла находятся в дуговом промежутке весьма малое время, необходимо учитывать результат и.х взаимодействия с газовой атмосферой дуги, состоящей из продуктов, выделяющихся при плавлении обмазки, — СОз, СО, Н2О, Нг. Пройдя дуговой промежуток, капли растворяются в сварочной ванне. При этом шлак всплывает на поверхность металла, вытесняется давлением дуги в стороны и, соприкасаясь с xoлoд ным металлом, застывает.  [c.358]


Смотреть страницы где упоминается термин Металлургические процессы в дуге и в сварочной ванне : [c.61]    [c.400]    [c.241]    [c.86]    [c.53]    [c.87]   
Смотреть главы в:

Металлургические и технологические основы дуговой сварки 1959  -> Металлургические процессы в дуге и в сварочной ванне

Ручная дуговая сварка металлов  -> Металлургические процессы в дуге и в сварочной ванне



ПОИСК



Ванны

Ванны ванны

Вес дуги

Металлургические процессы в сварочной ванне

Металлургический к оке

Процессы в сварочной ванне

Сварочная ванна

Сварочная дуга



© 2025 Mash-xxl.info Реклама на сайте