Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесная и неравновесная кристаллизация

РАВНОВЕСНАЯ И НЕРАВНОВЕСНАЯ КРИСТАЛЛИЗАЦИЯ  [c.103]

При рассмотрении равновесной и неравновесной кристаллизаций выделим четыре варианта  [c.104]

Рассмотрим структуру литых сплавов системы Ме—Л1 при равновесной и неравновесной кристаллизации. Согласно диа-  [c.20]

Есть ли различия в химическом составе твердой фазы после полной кристаллизации в равновесном и неравновесном режимах  [c.126]

В условиях же быстрых изменений температур изменяется не только температура превращения, но и условия превращения, так как не успевают (для переохлажденных систем) произойти диффузионные процессы, необходимые для осуществления превращений по типу равновесных. Для этих случаев равновесия диаграмма уже недействительна, хотя она и может оказаться необходимой в качестве отправного пункта при исследовании и для понимания тех или иных структурных особенностей, появляющихся при неравновесной кристаллизации.  [c.138]


Описанный выше процесс фиксирования быстрым охлаждением неустойчивого состояния носит название закалки, а последующий процесс постепенного приближения к равновесному состоянию (путем нагрева или длительной выдержки) называется отпуском и старением. Столь разнообразное изменение структуры, достигаемое разной степенью приближения сплава к равновесному состоянию, приводит к разнообразному изменению свойств, чем и обусловлено широкое применение термической обработки, в основе которой заложены процессы неравновесной кристаллизации, в общих чертах описанные выше.  [c.144]

Деформируемые бронзы содержат до 6 - 8 % Sn (табл. 10.6). В равновесном состоянии они имеют однофазную структуру (а-твердого раствора (см. рис. 10.12, а). В условиях неравновесной кристаллизации наряду с твердым раствором может образоваться небольшое количество й-фазы. Для устранения дендритной ликвации и выравнивания химического состава, а также улучшения обрабатываемости давлением применяют диффузионный отжиг, который проводят при 700 — 750 °С. При холодной пластической деформации бронзы подвергают промежуточным отжигам при 550 — 700 °С. Деформируемые бронзы характеризуются хорошей пластичностью и более высокой прочностью, чем литейные.  [c.311]

Суммируя, можно отметить, что в результате неравновесной кристаллизации твердого раствора создаются следующие отклонения от равновесного состояния а) возникает внутрикристаллитная ликвация б) понижается точка солидуса сплава в) из расплава кристаллизуются избыточные фазы, которых не должно быть. в равновесных условиях, и вместо однофазной образуется двухфазная или многофазная структура . г) увеличивается количество второй фазы, сели в равновесных условиях сплав должен быть гетерофазным.  [c.21]

Процессы кристаллизации, связанные с образованием новых растворов в твердом состоянии и наличием различных модификаций компонентов, происходят с теми же закономерностями, что и при кристаллизации жидких растворов. Основное отличие-превращений твердых растворов от жидких растворов состоит в том, что скорость диффузии в твердых растворах значительно меньше из-за малой подвижности атомов. Фазовые превращения в твердом состоянии протекают с более значительным отступлением от равновесных температур, т. е. твердые растворы склонны к значительным переохлаждениям и неравновесным состояниям. Этими особенностями твердых растворов пользуются на практике для получения фазовых составляющих с высокой степенью дисперсности и для изменения физических и механических свойств сплавов.  [c.78]


Структура сплавов и нх свойства в значительной степени определяются диаграммой состояния. Однако построенные для условий чрезвычайно медленного охлаждения равновесные диаграммы состояния не могут характеризовать структуру сплавов, образующуюся в реальных условиях литья. Если при затвердевании массивных отливок в песчаных формах отличие процесса кристаллизации от равновесного не столь значительно, то при затвердевании под давлением имеет место явно выраженная неравновесная кристаллизация, определяемая спецификой данного способа получения отливок.  [c.19]

Рис. 4.17. Схема ликвации в сплавах систем с неограниченной (а) и ограниченной (б) растворимостью компонентов в твердом состоянии (а , q и Ь[ — кривые среднего состава твердого раствора при неравновесной кристаллизации сплавов Сь Сг и Сз, соответственно практически кристаллизация сплава Сг завершается при температуре Те и при этой температуре средний состав кристаллов будет Сг как у расплава до начала кристаллизации сплавы, составы которых лежат слева от Сг, будут кристаллизоваться в однофазном состоянии, а сплавы, составы которых лежат справа, — в двухфазном, хотя сплавы из интервала Сг-я по равновесной диаграмме должны быть однофазными. Для составов, лежащих правее от Сг, например, для состава Сз при эвтектической температуре жидкость примет состав точки е, кристаллы — состав точки / и, следовательно, остается какое-то количество жидкости т, которое затвердеет и даст эвтектику. Таким образом, при кристаллизации вместо однородного твердого раствора согласно равновесной фазовой диаграмме получается структура неоднородного твердого раствора + эвтектика). Рис. 4.17. Схема ликвации в сплавах систем с неограниченной (а) и ограниченной (б) растворимостью компонентов в <a href="/info/324589">твердом состоянии</a> (а , q и Ь[ — кривые среднего состава <a href="/info/1703">твердого раствора</a> при <a href="/info/660567">неравновесной кристаллизации сплавов</a> Сь Сг и Сз, соответственно практически <a href="/info/7264">кристаллизация сплава</a> Сг завершается при температуре Те и при этой <a href="/info/136219">температуре средний</a> состав кристаллов будет Сг как у расплава до начала <a href="/info/7264">кристаллизации сплавы</a>, составы которых лежат слева от Сг, будут кристаллизоваться в однофазном состоянии, а сплавы, составы которых лежат справа, — в двухфазном, хотя сплавы из интервала Сг-я по <a href="/info/1490">равновесной диаграмме</a> должны быть однофазными. Для составов, лежащих правее от Сг, например, для состава Сз при <a href="/info/189217">эвтектической температуре</a> жидкость примет состав точки е, кристаллы — состав точки / и, следовательно, остается какое-то количество жидкости т, которое затвердеет и даст эвтектику. Таким образом, при кристаллизации вместо однородного <a href="/info/1703">твердого раствора</a> согласно равновесной <a href="/info/26487">фазовой диаграмме</a> получается <a href="/info/286448">структура неоднородного</a> <a href="/info/1703">твердого раствора</a> + эвтектика).
Так как скорость диффузии в твердой фазе мала, то по мере роста кристалла вновь нарастающие слои будут обогащаться компонентом В. Такое же обогащение было и в равновесном случае, однако там обогащались не только приграничные слои, но и весь объем твердой фазы. Это приводило к тому, что в конце кристаллизации состав кристалла становился равным составу исходного расплава. В результате неравновесной кристаллизации химический состав по длине кристалла оказывается неоднородным. Получающийся кристалл представляет собой ряд твердых растворов с непрерывно меняющимися концентрациями. Итак, мы пришли к выводу, сделанному вначале неоднородность химического состава по длине кристалла связана с разницей в составах жидкой и твердой фаз, находящихся между собой в равновесии при данной температуре, и замедленностью процессов выравнивания состава (диффузии) в твердой фазе.  [c.166]

Отклонения от равновесного состояния, еще более резкие, чем в системах с неограниченной растворимостью, наблюдаются в системах с эвтектическими и перитектическими превращениями. В таких системах однофазные согласно фазовым диаграммам сплавы могут оказаться двухфазными в условиях неравновесной кристаллизации (см. рис. 4.17,6).  [c.166]

Одним из проявлений неравновесной кристаллизации электролитических сплавов является образование пересыщенных твердых растворов, в том числе на основе компонентов, которые в равновесных условиях практически нерастворимы друг в друге [49]. При отжиге происходит распад пересыщенных твердых растворов и выделение избыточных фаз (интерметаллических соединений или фаз внедрения). Тип кристаллической решетки матричной фазы при этом не меняется она стабильна и при низких, и при высоких температурах.  [c.74]

Если две или более фаЭ находятся в тесном контакте, возникает потенциал, способствующий самопроизвольному переходу вещества через границы фаз, и система стремится к состоянию равновесия. Состояние равновесия характеризуется комплексом условий, к которым приближается неравновесная система как к пределу в большинстве случаев степень достижения равновесия настолько велика, что различие между реальным состоянием и равновесным находится в пределах ошибки опыта. Знание условий равновесия имеет первостепенное значение в таких технических процессах, как абсорбция, адсорбция, экстракция, дистилляция, испарение, высушивание и кристаллизация. Критерий для определения условий равновесия был разобран в гл. 8. Из всех возможных комбинаций фаз и веществ ниже будет рассмотрена только двухфазная система неэлектролитов, в котором одна из фаз — пар.  [c.264]


Разбирая процесс кристаллизации твердого раствора по диаграмме, приведенной на рис. 96, мы видели, что состав твердого раствора и жидкости изменяется непрерывно. Ранее выделившиеся кристаллы более богаты тугоплавким компонентом, чем образовавшиеся позднее при меньшей температуре. Твердая фаза в процессе равновесной кристаллизации должна быть все время однородной, поэтому предполагается, что процесс выравнивания состава твердой фазы (путем диффузии) не будет отставать от процесса кристаллизации. Однако обычно при кристаллизации твердых растворов первые кристаллы имеют более высокую концентрацию тугоплавкого компонента, чем последующие. Вследствие этого ось первого порядка дендрита содержит больше тугоплавкого компонента, чем ось второго порядка, и т. д. Междендритные пространства, кристаллизовавшиеся последними, содержат наибольшее количество легкоплавкого компонента, и поэтому они самые легкоплавкие. Описанное явление носит название дендритной ликвации. Состояние дендритной ликвации является неравновесным, неоднородный раствор имеет более высокий уровень свободной энергии, чем однородный. При длительном нагреве сплава дендритная ликвация может быть в большей или меньшей степени устранена диффузией, которая выравнивает концентрацию во всех кристаллах.  [c.138]

По мере повышения скорости охлаждения в условиях кристаллизации под давлением происходит пересыщение твердого раствора легирующим элементом за счет уменьшения количества неравновесной составляющей. Среднестатистическая концентрация меди в центре дендритных ячеек в этом случае находится между равновесными концентрациями точек ликвидуса и солидуса при температуре начала кристаллизации.  [c.30]

До сих пор аморфные сверхпроводники рассматривались как простые вещества. Уже говорилось о том, что при кристаллизации аморфных сплавов могут возникать неравновесные и равновесные фазы, которые нельзя получить обычной плавкой, механической или термической обработкой. Предполагают, что при этом Тс, Не и 7с значительно повышаются по сравнению с аморфным состоянием. Однако недостатком аморфных сплавов является то, что они довольно легко кристаллизуются и цри этом охрупчиваются. В настоящее время серьезное внимание обращается на разработку аморфных сверхпроводников, покрытых стабильными материалами, которые обладают хорошей электропроводностью, такими, как медь, алюминий и др.  [c.221]

Существенное значение для протекания вторичной кристаллизации имеют условия охлаждения. Незначительная степень переохлаждения или весьма медленное охлаждение обеспечивают получение равновесных структур. Чем больше степень переохлаждении аустенита или скорость его охлаждения, тем более неравновесной будет структура получаемой стали. Изменяя условия охлаждения, можно получить различные модификации структур, а именно сорбит, троостит или мартенсит, что существенно влияет на свойства сталей и сплавов.  [c.154]

Для полной характеристики данной системы следовало бы иметь не только плоскостную равновесную диаграмму в координатах температура—концентрация, но и пространственную диаграмму в координатах температура—концентрация—время, которая показывала бы переход от неравновесного к равновесному состоянию. Однако такая диаграмма была бы очень сложной. Рассмотрение равновесной диаграммы на основе более подробного разбора процессов, протекающих в сплавах, и закономерностей, которым эти процессы подчиняются, позволяет с достаточной вероятностью указать характер превращений при ускоренном охлаждении (особенно при первичной кристаллизации).  [c.208]

Из-за большого интервала кристаллизации и значительного изменения состава выпадающих кристаллов а-твердого раствора последние приобретают четкие дендритные формы с сильно выраженной дендритной ликвацией. Область а-твердого раствора на основе меди, распространяющаяся до 15—16% 8п при 500—800° С, резко сокращается при понижении температуры. Однако это действительно лишь для равновесных условий. Практически же из-за незавершенности диффузионных процессов кристаллизация сплавов проходит неравновесно, так что включения промежуточных фаз появляются в структуре после кристаллизации уже при 6—7% 5п. Эта граничная концентрация сохраняется неизменной и при дальнейшем понижении температуры до комнатной. Неравновесное состояние в этой части диаграммы отражено пунктирными линиями. Однако фактически отклонения от равновесия оказываются еще большими.  [c.218]

Между линиями равновесного и неравновесного солидуса имеется не только количественная разница в температурах, но и важное качественное различие. Линия равновесного солидуса обладает двумя функциями во-первых, она является геометрическим местом точек температур конца кристаллизации сплавов и во-вторых, она одновременно является геометрическим местом точек состава твердой фазы, равновес- ной с жидкой фазой в интер-Лвале кристализации. Линия не-равновесного солидуса является только геометрическим местом точек температур конца кристаллизации сплавов в конкретных условиях охлаждения. Следовательно, нельзя, как это иногда делают, определять по линии неравновесного солидуса системы средни состав твердого раствора, сосуществующего с жидкой фазой.  [c.17]

Повысить температуру распая можно также путем управления процессами затвердевания шва, направляя их по равновесному или неравновесному пути. Так, например, температура распая может быть повышена без заметной диффузии между швом и основным металлом, если в шве образуется неравновесная эвтектика при температуре ниже температуры равновесной эвтектики. Это может быть, в частности, в том случае, когда при кристаллизации шва подавляется перитектическая реакция и не образуется вторая фаза равновесной эвтектики.  [c.65]


Отжиг первого рода, который называют также простым отжигом, проводится с целью приведения структуры металла в более равновесное состояние. Отклонения от равновесия, которые устраняются отжигом первого рода, состоят, во-первых, в концентрационных мпкронеоднородностях из-за неравновесной кристаллизации. Во-вторых, эти отклонения могут представлять собой внутренние упругие напряжения, уравновешивающиеся в макрообъемах металла и называемые напряжениями 1-го рода. Отжигом первого рода устраняются также искажения и дефекты структуры, вызванные пластической деформацией металла,  [c.91]

Оба рассмотренных случая являются предельными. В действительности имеют место промежуточные режимы кристаллизации, при которых поверхность закристаллизовавшегося вещества движется в глубь жидкости со скоростью, определяемой уравнением (7.89) но уже при значительно меньших переохлаждениях. Непосредственно к этой поверхности примыкает зона, в которой кристаллизация идет и по объемному механизму. Однако в этой зоне, имеющей большую ширину, зародыши успевают превратиться в отдельные монокристаллики больших размеров, которые, смыкаясь, образуют поликристаллическую структуру. Заметим, что при идеально равновесной кристаллизации затвердевшее вещество представляет собой монокристалл, а в случае сильной неравновесиости затвердевшее вещество имеет аморфную структуру. В процессе кристаллизации частиц конденсированной фазы может наблюдаться весь спектр режимов кристаллизации от предельно неравновесного до идеально равновесного. В частности, кристаллизация может начаться как сильно неравновесная, а закончиться как идеально равновесная. Действительно, фронт неравновесной кристаллизации является зоной интенсивного выделения тепла, которое в дальнейшем отводится путем теплопроводности как в кристаллическую, так и в жидкую фазы. Если при этом скорость выделения тепла окажется больше скорости теплоотвода, то жидкость начнет прогреваться, переох-  [c.338]

В настоящее время считают, что состав центров первых зародышей новой фазы мало отличается от равновесной концентрации при температуре начала превращения. А. А. Бочвар 12] и И. И. Новиков [51] показали это при неравновесной кристаллизации алюминиевых сплавов эвтектического типа. Для условий фазовых превращений в твердом состоянии такой вывод еще более справедлив потому, что в связи с необходимостью затраты энергии на деформацию для образования устойчивого зародыша повой фазы в исходной твердой фазе требуются более значительные флуктуации состава, чем при кристаллизации жидкости. С момента образования зародышевого центра повой фазы, па межфазной границе весьма быстро устанавливаются концентрации фаз, близкие к равновесным, поскольку для этого не требуется перемещение атомов па значительные расстояния. В то же время внутри фаз создается градиент концентраций, так как в начальные моменты превращения внутренние объемы фаз еще имеют исходный состав. Объемная диффузия, выравнивающая концентрации внутри фаз, приводит к нарушению равновесия на межфазной границе и тем самым стимулирует развитие граничной диффузии, стремящейся вновь восстановить пограничные равновесные концентрации. Ири этом происходит перемещение межфазной границы в сторону фазы либо с более, либо с менее высокой концентрацией растворенного элемента в зависимости от того, понижает или повышает объемная диффузия пограничную концентрацию данного элемента. С увеличением степени переохлаждения линейная скорость роста зародышей новой фазы сначала во.зрастает за счет увеличения градиента концентраций в исходной фазе, а затем снижается вследствие уменьнгения коэффициента диффузии.  [c.25]

Так как дендриты образуются при выращивании кристаллов с большими скоростями, то для выращивания бездендритных кристаллов необходимо выбирать такие скорости роста, которые обеспечивают достаточный теплоотвод через расту ший кристалл. Для выращивания совершенных кристаллов на фронте кристаллизации стремятся к равновесному состоянию. Тем не менее, как указывается в [21], даже кристаллы кубической формы, например серебра, меди, золота, которые уже в силу симметрии своей структуры должны развиваться одинаково по трем взаимно перпендикулярным направлениям, могут образовываться в форме дендритов. В [21] факты неодинакового роста объясняются тем, что в протекающих во времени процессах осуществляется сразу две до определенной степени противоположные тенденции стремление к минимуму свободной энергии и стремление к наибольщей быстроте завершения процесса. Кристалл может достичь минимума поверхностной энергии только в условиях равновесия, то есть при бесконечно медленном росте, а наибольшей быстроты образования - при бесконечно развитой поверхности. В реальных условиях всегда наблюдаются ко.мпро.миссные формы, иногда приближающиеся к ограненным равновесным, иногда - к ветвистым неравновесным.  [c.51]

Волокнистые, слоистые и дисперсноуирочненные материалы принято относить к термодинамически неравновесным системам. Только эвтектические копозиции в силу специфических условий кристаллизации являются термодинамически равновесными.  [c.7]

Все, что говорилось до сих пор, касалось йверх)проводимости сплавов содержащих аморфную фазу. Однако известно, что аморфные сплавы кристаллизуются, при этом в них могут возникать неравновесные (наряду с равновесными) фазы, которые не получаются при обычной плавке, механической или термической обработке. Изменения в структуре могут привести к тому, что изменятся и характеристики Тс, Нсг и /с, причем они могут оказаться выше, чем для исходной аморфной фазы. Действительно, обнаружено, что в результате кристаллизации с выпадением неравновесных фаз свойства таких аморфных сверхпроводников, как Ti (V, Nb, Та) — Si [47-49], Hf - (V, Nb) - Si [50] и Qu - Nb - (Ti, Zr, Hf), [51, 52], повышаются. Tак, из рис. 7.8 видно, что аморфный сплав Си4оМЬзоТ1зо после отжига при 800—1000 К имеет критическую температуру Тс выше 4,2 К, хотя равновесная фаза в этом сплаве при 4,2 К уже не обладает свойством сверхпроводимости. В данном случае сверхпроводимость обусловлена выделением неравновесной фазы, имеющей упорядоченную о.ц.к. структуру.  [c.219]

Чрезвычайно опасной примесью жаропрочных аустенитных сталей и сплавов на никелевой основе является олово. Даже ничтожные количества этого элемента резко снижают длительную прочность. Влияние олова на горяч ел омкость аустенитных швов не столь энергично, ввиду довольно высокой растворимости олова в никеле — до 20% в равновесных условиях. Как и следовало ожидать, в неравновесных условиях кристаллизации сварочной ванны, никелеоловянистая эвтектика образуется при значительно более низких концентрациях олова. В шве типа 25-20 обилие горячих трещин наблюдается при 2—3% Sn (рис. 88, б). Увеличение  [c.215]

Основную роль в образовании ростовых микродефектов в выращиваемых монокристаллах играют СТД — вакансии и межузельные атомы. В реальных условиях выращивания монокристаллов, уже на достаточно малых расстояниях от фронта кристаллизации возникают значительные пересыщения по СТД, обусловленные резкой температурной зависимостью их равновесных концентраций в алмазоподобных полупроводниках. Образующиеся избыточные неравновесные СТД аннигилируют на стоках, в качестве которых выступают боковая поверхность слитка и присутствующие в его объеме более крупномасштабные дефекты, прежде всего, дислокации. По отношению к СТд дислокации являются практически ненасыщаемыми стоками. С учетом высокой подвижности СТД при высоких температурах сток на дислокации (при достаточно высокой плотности последних в кристалле) играет основную роль в снятии пересыщения. Однако бездислокационные монокристаллы лишены такого рода эффективных внутренних стоков, а боковая поверхность слитка в силу чисто диффузионных ограничений не может обеспечить снятия пересыщения. В результате, в объеме кристалла образуются пересыщенные твердые растворы СТД, которые в процессе посткристаллизацион-ного охлаждения распадаются с образованием специфических агрегатов, получивших название микродефекты . Следует отметить, что в литературе отсутствует единая точка зрения по поводу определения понятия микродефект . Под этим термином мы будем понимать локальные нарушения периодичности кристаллической решетки, представляющие собой скопления точечных дефектов (собственных или примесных), не нарушающие фазового состояния основного вещества, а также дисперсные выделения второй фазы микронных и субмикронных размеров.  [c.48]


Промышленное применение получили сплавы, содержащие 5 - 80 % Be. Согласно равновесной диаграмме состояния, все эти сплавы — заэв-тектические. В неравновесных условиях кристаллизации эвтектический бериллий формируется на дендритах первичного бериллия как на готовой подложке. Эвтектика как бы вырождается и структура сплавов состоит из матрицы, представляющей собой мягкую, пластичную фазу практически чистого алюминия, и включений частиц твердого и хрупкого бериллия.  [c.432]

Относительную стабильность металлических стекол оценивают по разности температур кристаллизации Тк и стеклования Tg при неп рерывном нагреве ДТ=Ту-Тк. Однако на практике чаше всего используют температуру кристаллизации Т , так как Tg установить трудно. Теоретически Tg определяют как температуру, ниже которой вре мя релаксации так велико, что равновесное состояние не может быть достигнуто за конечный промежуток времени (рис. 4.1). Отсюда следует, что при температуре стеклования Tg не могут образовываться зародыши кристаллической фазы критического размера, т.е. структуры фаз при Tтемпературные зависимости показателей основных физических свойств фаз испытывают или скачки или переломь[ (рис. 4.2). С позиций синергетики температура стеклования является критической температурой (точкой бифуркации), отвечающей неравновесному фазовому переходу при достижении которого система сама выбирает термодинамический путь своего дальнейшего развития [3].  [c.125]

Кристаллические структуры, обладающие трансляционной инвариантностью, удовлетворяют в состоянии равновесия требованиям минимума свободной энергии и максимума энтропии твердой фазы. Поэтому в идеальных равновесных условиях образуется монокристалл определенной симметрии, обеспечивающий минимальное значение свободной энергии с термодинамически-равновесной концентрацией дефектов [9]. Отклонение процесса кристаллизации от условий идеальной равновесности обусловливает нарущение трансляционной инвариантности формируемой структуры на масштабах Ls Lo. Это проявляется в образовании поликри-сталлических структур материалов, кристаллизующихся в квазиравновес-ных условиях. Размер зерен Ls определяется степенью неравновесности системы (подсистемы) [16]. При этом вследствие масштабной инвариантности неоднородных флуктуаций и сдвига в конденсированных средах, обладающих жесткостью, конфигурации межзеренных и межфазных фаниц в поликристаллах имеют мультифрактальную структуру [16].  [c.133]


Смотреть страницы где упоминается термин Равновесная и неравновесная кристаллизация : [c.63]    [c.17]    [c.80]    [c.335]    [c.467]    [c.74]    [c.270]    [c.496]    [c.72]    [c.15]    [c.127]   
Смотреть главы в:

Материаловедение Технология конструкционных материалов Изд2  -> Равновесная и неравновесная кристаллизация



ПОИСК



Кристаллизация

Кристаллизация неравновесная

Кристаллизация равновесная



© 2025 Mash-xxl.info Реклама на сайте