Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение напряжений методом натурными испытаниями

Разработка, создание и использование новых средств экспериментального исследования материалов и конструкций. Решение проблемы обеспечения надежности и ресурса изделий машиностроения, как уже отмечалось, в известной мере определяется уровнем разработки методов и средств экспериментальной оценки действительной нагруженности конструкций, напряженно-деформированных и вибрационных состояний, параметров структуры материалов, характеристик прочности и трещиностойкости, динамических характеристик прочности, трещиностойкости и тела человека—оператора машины при вибрационных и других воздействиях. Это обусловлено необходимостью повышения объема экспериментальной информации с возрастанием вероятности безотказной работы, которую необходимо обеспечить при создании ответственных конструкций. Полученная информация является весьма ценной для оценки завершенности экспериментальной отработки машин и конструкций при проведении лабораторных и натурных испытаний, а также для определения влияния условий эксплуатации на изделия и установления остаточного ресурса конструкций.  [c.28]


Испытания проводят при различных видах напряженного состояния и различных температурах. Испытания могут быть выполнены при кратковременном или длительном приложении нагрузок, а также с учетом влияния среды, в которой происходит работа деталей машин и конструкций, технологии их изготовления и других факторов. Однако свойства материалов, определенные при простейших напряженных состояниях и на образцах, в значительной степени отличаются от свойств реальных деталей машин и конструкций при их натурных стендовых испытаниях или в процессе эксплуатации. Реальные детали машин и конструкции находятся иод действием сложной системы напряжений, часто имеют сложную конструктивную форму и для них экспериментально трудно определить напряжения, при которых начинаются пластические деформации или наступает процесс разрушения материала. Поэтому возможно большее приближение методов механических испытаний к работе реальных изделий является одной из основных задач, решение которых позволит повысить долговечность и надежность работы деталей машин и конструкций.  [c.11]

Вместе с тем установлено, что в реальных конструкциях в зоне примыкания патрубка пластические деформации возникают при весьма низких номинальных напряжениях, составляющих примерно 0,2от- Поэтому для определения фактических внутренних усилий в этой зоне необходимо проведение испытаний крупномасштабных моделей, выполненных из натурного материала и нагруженных в упругопластической области. Кроме того, как отмечалось выше (см. гл. 1, 2, 3), для уточненных расчетов малоцикловой прочности необходимо учитывать кинетику деформированного состояния расчетных сечений при повторном нагружении. Для неосесимметричных задач теории оболочек перераспределение упругопластических деформаций на каждом цикле нагружения может быть изучено в настоящее время преимущественно экспериментальным путем. Проведение таких экспериментальных исследований сопряжено с измерением полей упругопластических деформаций, характеризующихся значительным градиентом при этом возникает необходимость измерения и регистрации больших пластических деформаций в процессе циклов нагружения и малых упругих деформаций при разгрузке. Из известных методов измерения полей упругопластических деформаций на плоскости обычно используются методы оптически активных покрытий, муаровых полос и малобазные тензорезисторы.  [c.139]


Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

ДЛЯ более пластичных материалов, натурных проб, образцов, подвергаемых обычным испытаниям на усталость, и т.д. можно, применяя специальные метод фиксации величины напряжения и длины трещины в момент перехода ее к нестабильному развитию в условиях плоско-деформированного состояния. Образец, используемый для определения параметра Ki при изгибе, показан на рис. 13.  [c.32]

Метод определения предела выносливости по критическому напряжению предложен применительно к симметричным циклам нагружения, имеющим наибольшее распространение при испытаниях на усталость образцов металла. При испытаниях натурных деталей для приближения условий испытаний к условиям эксплуатации приходится часто пользоваться асимметричным циклом нагружения поэтому была проведена проверка влияния статической составляющей асимметричного цикла на изменение критического числа циклов.  [c.178]

Было проведено сопоставление значений напряжений (Ог, г г), соответствующих по корреляционному уравнению левой ветви кривой усталости числу циклов N = 10 , с фактическими пределами выносливости деталей (0 т ), определенными при испытании. Для того чтобы получить наиболее достоверную кривую усталости, при проверке метода применялась статистическая обработка результатов по способу наименьших квадратов. Разности этих величин А для некоторых автомобильных деталей приведены в табл. 15. Как следует из таблицы, характерной особенностью экстраполяции верхнего участка кривой усталости натурных деталей до 10 млн. циклов является то, что получаемые при этом напряжения всегда меньше предела выносливости, определенного экспериментально. Это объясняется тем, что у большинства испытанных деталей точка перелома кривой усталости находится ниже 10 млн. циклов. Чем меньше тангенс т угла наклона левого участка кривой усталости на графике с логарифмической сеткой, тем больше отклонение напряжения, полученного экстраполяцией, от фактического предела выносливости (см. корреляционные уравнения в табл. 15).  [c.180]

Метод тензометрических моделей из низкомодульных материалов. Тензометрические модели из материала с низким модулем упругости применяются для решения следующих задач определение напряжений, усилий и перемещений в сложных конструкциях при заданных силовых нагрузках разработка и проверка методов расчета напряжений и перемещений сопоставление и выбор вариантов конструкций при проектировании по условиям прочности и жесткости выбор типа нагружения и расположения точек измерений при исследовании натурных конструкхщй в условиях стендовых и эксплуатационных испытаний оценка по данным натурной тензометрии напряжений в конструкции в местах, где не проводились измерения деформаций.  [c.121]


При экспериментальном определении нагрузок широко используется метод натурных тензометрических испытаний. Испытываются ПТМ, работающие в нормальных или экстремальных эксплуатационных условиях. Измерение нагрузок (напряжений) осуществляется с помощью тензостанций [29]. Непосредственное измерение напряжений в деталях осуществляется обычно специальными датчиками [18]. Для анализа процессов нагружения и связи их с перемещениями, скоростями и ускорениями регистрируются обороты двигателей с помощью тахоге-нераторов или счетчиков оборотов, мощности двигателей с применением самопишущих ваттметров ускорения отдельных элементов определяются акселерометрами. Для регистрации углов отклонения грузовых канатов от вертикали, вылетов стрелы, перемещений тележек и т. д. используются специальные приборы, снабженные реохордами [29]. В качестве регистрирующей аппаратуры применяются осциллографы, самописцы, счетчики показаний датчиков. Для того чтобы получить достоверные данные по нагрузкам, реализация нагрузок должна быть представительной, т. е. достаточно продолжительной. Длитель-  [c.94]

Таким образом, решая методом матричного исчисления уравнение (4.5), находим значения отношений коэффициентов уравнения (4.3) и искомую долговечность материала в натурной среде т для заданного у1ювня напряжений. Предлагаемый метод определения т базируется на испытании образцов, изготовляемых из ТП и аппаратов.  [c.162]

Наиболее полное приближение к результатам натурных испытаний несущей системы дает расчет кузова и рамы с использованием метода конечных элементов. Этот метод расчета многократно статически неопределенных конструкций основан на совместном рассмотрении напряженного состояния системы небольщих элементов конечного размера. Метод конечных элементов заключается в том, что реальная конструкция заменяется структурной моделью, состоящей из проетейщих элементов, таких, как стержни, пластины и др. объемные элементы с известными упругими свойствами. Исходя из того, что упругие свойства отдельных элементов известны, можно определить свойства всей системы в целом при определенных нагрузках.  [c.341]

При расчете на прочность в процессе проектирования конструктор должен располагать методом определения ха-рактеристикустал ости натурной детали, соответствующих определенной вероятности разрушения, наоснове некоторых характеристик применяемого материала. Проведение испытаний на усталость большого числа натурных деталей или их моделей в процессе проектирования представляется во многих случаях мало реальным ввиду больших размеров и разнообразия форм деталей и условий возникновения в них кЬнцентрации напряжений.  [c.258]

Раскрытие трещины и общий механизм хрупкого разрушения. Трудность применения метода линейной механики разрушения к сравнительно вязким конструкционным сталям низкой и средней прочности объясняется тем, что в этих случаях разрушение может быть связано со значительной локальной пластичностью. В таких материалах во время испытания образцов стандартных размеров с надрезом при нормальных скоростях деформации перед разрушением впереди напряженной трещины может распространяться пластическая зона. Вследствие этого невозможно проанализировать упругое напряженное состояние и вычислить показатель вязкости разрушения Кс- Уэллс (1969 г.) разработал метод, приняв, что неустойчивое распространение дефекта происходит при его критическом раскрытии около вершины (критическое раскрытие трещины или OD). Он предполагал, что это значение одинаково для реальных конструкций к образцов небольших размеров подобной толщины. Экспериментальное подтверждение было получено несколькими специалистами. Например, результаты определения разрушающих напряжений для охрупченных труб высокого давления из сплава циркония хорошо согласовывались с данными испытаний на изгиб образцов небольших размеров с надрезом для исследования критического раскрытия трещины (Фернихауф и Уоткинс, 1968 г.). Хорошее соответствие наблюдалось между поведением материалов при инициирующих испытаниях широкого листа и на изгиб образцов натурной толщины для выявления величины критического раскрытия трещины (Бурде-кин и Стоун, 1966 г.). В условиях малой пластической деформации можно показать, что усилие распространения трещины G есть произведение предела текучести Оу и критического раскрытия трещины б  [c.236]

Это позволяет до изготовления и пуска создаваемого энергетического оборудования провести исследование деформаций, напряжений и тепловой нагруженпости узлов конструкций с целью их улучшения, оценки прочности и выбора по напряжениям допускаемых режимов эксплуатации. Данные" тензометрии при стендовых испытаниях, которая может быть выполнена в значительно большем числе точек, чем на работающем оборудовании, позволяют также правильно выбрать места установки тензорезисторов и сократить их количество при измерениях на работающем оборудовании. Эти данные дают также получаемые для рассматриваемых типовых режимов соотношения между деформациями, напряжениями и температурами в точках наружных и внутренних поверхностей стенок (и по их толщине) оборудования, что позволяет по измерениям, проведенным на внешней поверхности, судить о напряжениях на внутренней поверхности, где во многих случаях установить тензометры в подготавливаемом для эксплуатации оборудовании нельзя. Тензоизмерения при стендовых испытаниях проводятся также для проверки метода и средств, подготовляемых для тензометрии оборудования при его эксплуатации. Проверка всех результатов, получаемых при тензометрии на стендах, и прямое определение действительной напряженности и нагружен-ности узлов оборудования выполняются путем натурной тензометрии при его монтаже, пуске и эксплуатации.  [c.107]


Но можно привести и такие примеры, когда масштабный эффект, вносимый трещиной, количественно выразить намного сложнее. Так, на эффективную поверхностную энергию, а следовательно, на прочность влияют самоуравновешенные остаточные напряжения, энергия которых частично высвобождается при росте трещины. Ясно, что плотность высвобождающейся энергии (приходящейся на единицу приращения площади трещины) и тем самым ее влияние на прочность зависят от размеров тела (с увеличением размеров прочность должна понижаться, что и обнаруживается на самом деле), но каковы здесь количественные соотношения, не установлено. Далее, при определении трещиностойкости материала на лабораторных образцах (на тонких пластинах с трещиной) не удается удовлетворить условиям подобия, обеспечивающим возможность распространить выводы из таких испытаний на крупногабаритные натурные конструкции. Дело в том, что сохраняя отношение длины трещины к толщине пластины, мы не можем сохранить отношение критических напряжений к пределу текучести. Выход из этого положения лежит в развитии методов нелинейной механики разрушения, явно учитывающей пластические деформации у края трещины.  [c.19]


Смотреть страницы где упоминается термин Определение напряжений методом натурными испытаниями : [c.25]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.159 ]



ПОИСК



Метод испытаний

Метод напряжений

Напряжение Определение

Напряжения Определения метода

Определение Испытания -



© 2025 Mash-xxl.info Реклама на сайте