Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрические процессы в диэлектриках

Глава II. ЭЛЕКТРИЧЕСКИЕ ПРОЦЕССЫ В ДИЭЛЕКТРИКАХ  [c.21]

Продолжительное воздействие электрического поля высокой напряженности приводит к необратимым процессам в диэлектрике, в результате которых его пробивное напряжение снижается, т.е. происходит электрическое старение изоляции. Вследствие такого старения срок службы изоляции ограничен. Кривую зависимости 1/ от времени приложения напряжения называют кривой жизни электрической изоляции.  [c.116]


Явление электрического пробоя связано с электронными процессами в диэлектрике, возникающими в сильно электрическом поле и приводящими к внезапному резкому местному возрастанию плотности электрического тока к. моменту пробоя.  [c.116]

Такие ионы в тепловом движении могут перемещаться на расстояния, значительно превышающие упругие смещения. Но в отличие от электропроводности этот процесс носит локальный, а не сквозной характер. Локальные тепловые перемещения слабо связанных ионов при наличии электронного поля создают асимметрию распределения электрических зарядов в диэлектрике и, следовательно, создают электрический момент в единице объема. Диэлектрическая проницаемость зависит от частоты электрического поля и от температуры. После снятия поля ионно-релаксационная поляризация постепенно ослабевает. Поляризация этого типа имеет замедленный характер и при высоких частотах не происходит.  [c.8]

Рассмотрим кинетику установления электрического поля в диэлектриках с упорядоченным расположением включений. Нас интересует взаимосвязь изменения максимальной напряженности поля вблизи неоднородности с кинетикой процесса релаксации диполей, для  [c.129]

Исследования последних лет позволяют утверждать, что важную роль в процессе переноса электрического заряда в диэлектриках играет не только ионная, но и электронная электропроводность [8]. Электронный перенос заряда в отличие от ионных механизмов является стационарным процессом не только в переменных, но и в постоянных полях, так как между диэлектриками и электродами происходит обмен одинаковыми по физической природе носителями заряда (электронами).  [c.42]

Как отмечалось выше, при длительном воздействии электрического поля в диэлектрике могут иметь место электрохимические процессы, приводящие к постепенному снижению электри-  [c.98]

При приложении электрического напряжения в диэлектрике начинают протекать несколько электрических процессов — поляризации, электропроводности и др. В случае очень большого напряжения может произойти разрушение диэлектрика, называемое пробоем. Эти  [c.21]

В диэлектриках электроны прочно связаны. с атомами и ионами, поэтому под действием электрического поля в диэлектриках не возникает электронной проводимости, а происходит лишь некоторое смещение положительных зарядов в одну сторону, а отрицательных в другую. Этот процесс называют поляризацией. Если группы атомов в решетке диэлектрика имеют постоянный дипольный момент, то под действием электрического поля может происходить их ориентация. В общем случае поляризация складывается из электронной (смещение электронов относительно ядер), ионной (сдвиг ионов разных знаков) и ориентационной (ориентация постоянных диполей, если они имеются) поляризации. Скорости установления поляризации этих трех типов сильно различаются так, ориентация постоянных диполей вносит вклад в общую поляризацию лишь на низких частотах (до Ю герц), ионная поляризация —в инфракрасной области спектра электронная поляризация —в ультрафиолетовой области спектра. Диэлектрические свойства в основном являются объемными, т. е. роль дефектов в них незначительна.  [c.75]


Нелинейным диэлектрикам — сегнетоэлектрикам наряду с электронной и ионной свойственна спонтанная (самопроизвольная) поляризация, относящаяся к числу релаксационных видов. Спонтанная поляризация возникает в определенном температурном интервале, ограниченном сегнетоэлектрическими точками Кюри, под влиянием внутренних процессов самопроизвольно. При этом структура элементарной ячейки кристалла становится несимметричной, приобретая электрический момент. В пределах  [c.544]

При длительном действии напряжения пробой может быть вызван электрохимическими процессами, происходящими в диэлектрике под воздействие.м электрического поля.  [c.116]

Ионно-релаксационная поляризация. Используемые в технике твердые диэлектрики могут иметь неплотную упаковку объема частицами. В таких материалах образуются ионы, которые в ходе тепловых колебаний перебрасываются из положений временного закрепления на расстояния, соизмеримые с расстояниями между частицами (10 м), и закрепляются в новых положениях. В электрическом поле перебросы становятся направленными. В результате в диэлектрике возникает различие в расположении центров положительного и отрицательного зарядов, т. е. появляется электрический момент. Такой процесс называют ионно-релаксационной поляризацией. С ростом температуры число ионов, перебрасываемых в новые положения, увеличивается, поэтому растут поляризованность и диэлектрическая проницаемость. На рис. 5.16 приведена зависимость е, от температуры для натриево-силикатного стекла, в структуре которого имеют место слабосвязанные ионы.  [c.156]

На переменном напряжении /абс Имеет место, если время релаксации процесса медленной поляризации меньше или соизмеримо с полупериодом приложенного напряжения (т < Т/2). В этом случае мощность, рассеиваемая в диэлектрике под воздействием на него электрического поля — диэлектрические потери, обусловливаемые токами /(К и /абс. наблюдаются в течение всего времени приложения напряжения.  [c.159]

Поляризация есть процесс смещения и упорядочения зарядов в диэлектрике под действием внешнего электрического поля. Этот процесс зависит оТ поляризуемости частиц диэлектрика, которая определяется как величина поляризации атома, молекулы или иона. Состояние вещества при электрической поляризации характеризуется тем, что электрический момент некоторого объема этого вещества имеет значение, отличное от нуля.  [c.5]

Как плотность, так и диэлектрическая постоянная диэлектрика в общем случае меняются при сжатии. В связи с отсутствием в литературе данных об изменении этих параметров в волнах сжатия, проведем оценку влияния давления на величину е на основе общих соображений о поведении диэлектрика в электрическом поле (волновыми процессами в диэлектрическом слое пренебрегаем вследствие их незначительного влияния при малой толщине диэлектрика).  [c.175]

В соответствии с предварительным анализом электрический сигнал, вызванный сжатием диэлектрика при прохождении волны нагрузки, характеризует импульс нагрузки при соединении плоского конденсатора с поляризованным диэлектрическим слоем с измерительной аппаратурой по схеме с короткозамкнутыми электродами, представленной на рис. 85 (постоянная времени R значительно меньше времени регистрации). При таком соединении разность потенциалов на электродах датчика остается постоянной в процессе сжатия диэлектрика ударной волной, а величина сигнала, снимаемого с сопротивления нагрузки, определяется током подзарядки датчика, зависящим от параметров волны нагрузки.  [c.186]

Технической особенностью реализации данного варианта способа является обеспечение особых условий пробоя. Эти условия относятся к выбору среды, в которой реализуется процесс, и соотношения расстояний между электродами по поверхности массива Id и на сквозной пробой Обычно электрическая прочность твердых материалов выше прочности жидкостей и газов и соотношение U.U должно быть существенно больше 1.0 для того, чтобы имел место электрический пробой в толще твердого материала, а не перекрытие его по поверхности. Чем выше электрическая прочность среды, окружающей твердый материал, тем проще добиться пробоя в толще твердого материала. Именно так поступают в исследованиях электрической прочности твердых диэлектриков, помещая подвергаемые электрическому пробою образцы в электрически прочную жидкую среду (например, трансформаторное масло), а сами образцы вьшолняют в форме пластин с отношением ширины к толщине образца не менее 5-10.  [c.9]


Создать технологию с непрерывным процессом разрушения массива затруднительно, поэтому дальнейшие исследования были направлены на то, чтобы снять указанные выше ограничения в условиях осуществления электрического пробоя. Требовалось создать условия, при которых пробой породы мог бы быть осуществим даже при наложении электродов только с одной свободной поверхности. В исследованиях электрической прочности жидких и твердых диэлектриков на косоугольной волне импульсного напряжения было установлено, что их вольт-временные зависимости пробоя (далее вольт-секундные характеристики - в.с.х.) характеризуются различным коэффициентом импульса ki. Данный коэффициент определяет степень роста напряжения пробоя на импульсном напряжении по отношению к напряжению пробоя на статическом напряжении (напряжении постоянного тока, тока промышленной частоты). С уменьшением времени экспозиции импульсного напряжения прочность жидких диэлектриков растет быстрее, чем для твердых диэлектриков, что приводит к инверсии соотношения электрических прочностей сред /2/. На статическом напряжении электрическая прочность твердых диэлектриков, как правило, превышает прочность жидких диэлектриков в одинаковых разрядных промежутках. Однако на импульсном напряжении при экспозиции напряжения менее 10- с электрическая прочность диэлектрических жидкостей и даже технической воды возрастает настолько, что становится выше прочности твердых диэлектриков и горных пород.  [c.10]

Характерной особенностью электроимпульсного способа разрушения неоднородных тел является повышенная избирательность процесса /7/, позволяющая увеличить извлечение полезных компонентов из руд по сравнению с традиционными способами разрушения. Прежде всего эффект избирательности связывают /7,70,71,107/ с направленным движением канала разряда в области расположения неоднородностей. Действительно, наличие неоднородностей в диэлектрике, находящемся в электрическом поле, вызывает появление локальных зон повышенных напряженностей поля, которые определяют траекторию канала разряда.  [c.127]

Особенностью электроимпульсного способа является импульсное приложение напряжения с характерным временем Ю -Ю с, которое соизмеримо с процессами поляризации диэлектрика. Впервые анализ процессов, протекающих в системе диэлектриков применительно к электроимпульсной технологии, был проведен авторами работ /72,73/, где рассматривалась кинетика установления поля в двухслойной системе диэлектриков с учетом поляризационных процессов при условии слабости поля рЕ кТ). Полученные результаты позволили определить физический смысл явления превышения электрической прочности жидкостей над твердыми телами (в том числе для горных пород) при времени воздействия напряжения менее 10- с.  [c.127]

Описание процесса установления поляризации зависит от вида модели, положенной в основу расчета, и от характеристики внутреннего поля в диэлектрике. Для анализа процессов примем модель двух состояний диполя /76/, а электрическое поле внутри диэлектрика зададим двумя вариантами первый - когда внутреннее электрическое поле диэлектрика равно внешнему  [c.128]

С точки зрения классической электромагнитной теории ВРМБ можно рассматривать как процесс параметрического усиления упругой волны с частотой й и холостой электромагнитной волны с частотой со—й за счет энергии мощной электромагнитной волны накачки с частотой со. Поясним это. При больших значениях напряженности электрического поля световой волны становится существенным не только влияние создаваемых упругой волной оптических неоднородностей на распространение света, но и влияние света на оптические параметры среды. Такое влияние обусловлено, в частности, явлением электрострикции в электрическом поле в диэлектрике возникает дополнительное давление, пропорциональное квадрату напряженности электрического поля Пусть, например, в  [c.499]

При отсутствии внешнего электрического поля ориентация дипольных моментов микросистем диэлектрика имеет хаотический характер и вектор поляризации равен нулю. Если в диэлектрике существует электрическое поле напряженностью Е, то на каждый заряд диполя действует сила F qE, стремящаяся развернуть диполь по направлению электрического поля (рис. 9-2, а). Преимущественная ориентация диполей в одну сторону приводит к тому, что их геометрическая сумма в единице объема 01лич[ а от нуля и в соответствии с формулой (9-3) вектор поляризации в этом случае тоже не равен нулю. Так выглядит в самом грубом приближении один из возможных механизмов поляризации диэлектрика. Более подробно различные виды процесса поляризации будут рассмотрены в 9-2.  [c.137]

Формула (9-48) описывает простое наложение явлений поляризации и сквозной проводимости, не учитывая влияние электропроводности на сам процесс поляризации. В действительности с появлением сквозной проводимости в диэлектрике может дополнительно возникнуть объемная поляризация, чаще всего ее макроструктурная разновидность, и тогда Аврел возрастает с увеличением электрической проводимости.  [c.152]

Поверхность адсорбирует пыль, газы и другие вещества, образующиеся в результате протекающих в ходе эксплуатации изоляции физико-химических процессов в окружающей диэлектрик среде. Сильно загрязняется поверхность электроизоляционных конструкций (высоковольтных вводов, изоляторов и др.), работающих в загрязненной атмосфере промышленных и приморских районов. Образовавшийся на поверхности слой загрязнений имеет здесь такое небольшое электрическое сопротивление, что значение поверхностного тока утечки достаточно для нагрева поверхности до температур, больших 373 К (100 °С). При таком нагреве происходит вскипание воды на поверхности. Если этот процесс происходит в условиях увлажнения дождем, то перепады температур приводят к образованию микротрещин и механическому разрушению приповерхностного слоя изоляции. Не исключена и возможность воздействия различных агрессивных продуктов на приборы радиоэлектроники и автоматики при их использовании для регулирования работы электрических машин и аппаратов в устройствах энергетики, наземного, воздушного и водного транспорта. Поэтому в конструкциях приборов предусматриваются герметизация узлов с развитой поверхностью электроизоляционных промежутков, защита их поверхности специальными несмачиваемыми, незагрязняющими герметиками. Настройка и ремонт приборов, требующие разгерметизации, должны выполняться при условии, когда исключено всякое загрязнение и увлажнение электроизоляционных деталей. Элек-трокерамические электроизоляционные конструкции покрываются специальными грязестойкими глазурями, широко используется защита их поверхности гидрофобными кремыийорганическими лаками и герметиками. Покрытие из кремнийорганических соединений применяют для защиты поверхности электроизоляционных конструкций, изготовленных из стекла.  [c.148]


Процессы миграционной поляризации одни из самых медлен ных. Время на их завершение изменяется в пределах 1—10" с Спонтанная (самопроизвольная) поляризация. Доменная полярн эация. Сегнетоэлектрики. Характерные для сегнетоэлектриков свой ства впервые были обнаружены у сегнетовой соли. В дальней шем сегнетоэлектриками стали называть вещества, свойства кото рых подобны свойствам сегнетовой соли. В сегнетоэлектриках даже в отсутствие электрического поля наблюдается самопроизвольное смещение частиц — ионов в ионных кристаллах или полярных радикалов молекул, которое приводит к несовпадению центров положительного и отрицательного зарядов в объеме диэлектрика, т.е. поляризации. Такая поляризация называется спонтанной (самопроизвольной). В результате в диэлектрике образуются области-домены, где все частицы, обусловливающие самопроизвольную поляризацию, смещены в одном направлении. В этом направлении ориентирован и вектор спонтанной поляризованности Р, домена. В со-  [c.157]

При низких температурах вязкость диэлектрика так велика, что диполи заморожены , не ориентируются в электрическом поле и дипольная поляризация не происходит. Проводимость диэлектрика при низких температурах мала, а поэтому невелики /ск и вызываемые им диэлектрИческйе потери. Поэтому tg б жидкого полярного диэлектрика при низких температурах имеет небольшое значение (рис. 5.21, а, пунктирная линия). С ростом температуры вязкость диэлектрика уменьи1ается. время релаксации полярных молеку.-i становится меньше и они вовлекаются в процесс поляризации. Ориентация (поворот молекул в поле в результате преодоления межмо-лекулярных сил) происходит с трением . На работу против сил трения затрачивается энергия электрического поля, которая и рассеивается в диэлектрике, активная составляющая /да тока абсорбции /аос увеличивается и tgfi диэлектрика растет (рис. 5.21, а). При температуре вязкость диэлектрика уменьшается до такого значения, что время релаксации И полупериод T 2 - i2f) приложенного напряжения становятся одинаковыми Полярные молекулы в течение одного полупериода поворачиваются на максималь-  [c.162]

Электрический пробой, в процессе которого диэлектрик разрушается силами, действующими в электрическом поле на электрические заряды его атомов, ионов или молекул. Этот вид пробоя протекает в течение 10 — 10 с, т. е. практически мгновенно. Ом вызывается ударной ионизацией электронами. На длине свободного пробега К электрон в электрическом поле приобретает энергию W еЕк, где е заряд электрона. Если энергия электрона достаточна для ионизации, то электрон при соударении с атомами, ионами или молекулами, из которых состоит диэлектрик, ионизирует их. В результате появляются новые электроны, которые также ускоряются электрическим полем до энергии WТаким образом, количество свободных электронов лавинно возрастает, что приводит к резкому повышению проводимости и электрическому пробою. Плотность жидких и твердых диэлектриков больше плотности газообразных, а поэтому д ина свободного пробега электронов в них меньше. Для того чтобы электрон приобрел энергию W, ,, в жидком и твердом диэлектриках нужна большая напряженность электри-  [c.169]

Электрическая прочность жидких диэлектриков в однородном поле большая, чем в неоднородном. В неоднородном поле в жидкости может наблюдаться неполный пробой (корона). Под действием короны происходят процессы иитеисивиого ра.чложепия жидкости, в результате которых образуются продукты, резко снижающие ее электрическую прочность. Например, при разложении нефтяных масел образуются горючие газы и сажа. Если коронный разряд пе-рехйдит в дуговой, то процессы разложения резке ускоряются.  [c.178]

Ионизирующие и.члучения большой мощности вызывают нагрев вещества и уменьшают его теплопроводность, что снижает ,> ири тепловом пробое диэлектрика. При облучении в диэлектрике могут наблюдаться газовыделение и ионизация газа в порах, процессы ускоряют разрушение и снижают электрическую прочность диэлектрика, как и частичные разряды, возникающие в диэлектрике В электрическом поле.  [c.182]

При повышении напряженности электрического поля в твердом диэлектрике, так же как в жодком и газообразном возникают ионизационные процессы, связанные с увеличением сквозного тока, высоковольтной поляризацией, ударной ионизацией, диэлектрическими потерями, нагревом диэлектрика. В сильных полях нарушается закон Ома плотность тока растет по экспоненциальному закону в функции напряженности поля напряжение начинает падать, а ток резко возрастает, стремясь к бесконечности — наступает пробой диэлектрика. В случае большой мощности ток расплавляет материал диэлектрика, прожигает  [c.36]

Теория электрического пробоя. В основе электрического пробоя твердых диэлектриков лежат электронные процессы ударной ионизации, которые и объясняют пробой твердого диэлектрика импульсами напряжения длительностью 10 —10 сек. В этом процессе исключается влияние диэлектрических потерь и нагрева материала под действием напряжения. Как и в газах, пробой наступает мгновенно, не зависит от времени действия напряжения и связан с разрушением молекулярной и кристаллической структуры материала. При электрическом пробое решающим фактором является напряженность электрического поля, так как именно она обусловливает процесс образования и движения электронов в диэлектрике. Этим и, определяются закономериости изменения пробивного напряжения от времени, температуры и частоты, которые наблюдаются при электрическом пробое.  [c.39]

Поляризационные процессы смещения связанных зарядов в веществе до момента установления равновесного состояния протекают во времени, создавая токи смещения, в диэлектриках. Токи смещения упругосвязанных зарядов при электронной и ионной поляризациях столь кратковременны, что их обычно не удается зафиксировать прибором. Токи смещения различных видов замедленной поляризации, наблюдаемые у большого числа технических диэлектриков, называют абсорбционными токами. При постоянном напряжении абсорбционные токн, меняя свое направление, протекают только в моменты включения и выключения напряжения при переменном напряжении они протекают в течение всего времени нахождения материала в электрическом поле.  [c.30]

Все существующие феноменологические модели связи электрического сигнала на электродах короткозамкнутого конденсатора с диэлектрическим слоем при прохождении волны нагрузки с параметрами нагрузки предполагают поляризацию диэлектрика на фронте волны с изменением диэлектрической проницаемости и проводимости (или без изменения последней) I связанную с поляризацией неравновеспость состояния вещества за фронтом волны. За фронтом идет процесс распада поляризации по одному или нескольким механизмам с соответствующими временами релаксации [109, 157, 311, 374]. Для большинства исследованных материалов в диапазоне давления до ЫО кгс/см2 величина ударной поляризации в 10 —10 раз лченьше предельной величины поляризации, соответствующей развороту всех диполей полярного диэлектрика в одном направлении. В связи с этим следует ожидать, что при наложении сильного электрического поля поляризация диэлектрика значительно более высокая, чем при прохождении ударной волны. Вместе с тем вклад ударной поляризации в поляризованном электрическим полем диэлектрике резко уменьшается. Эти соображения позволяют принять, что процессы ударной поляризации в диэлектрике при сильном внешнем электрическом поле можно не учитывать при анализе работы диэлектрического датчика давления.  [c.173]


Поскольку выщеописанные процессы обусловлены прохождением электронов через диэлектрик, такая возможность существует также и для ионов, присутствующих в примесях или дефектах и перемещающихся в диэлектриках под влиянием электрического поля (ионная проводимость).  [c.451]


Смотреть страницы где упоминается термин Электрические процессы в диэлектриках : [c.140]    [c.20]    [c.302]    [c.38]    [c.46]    [c.84]    [c.179]    [c.182]    [c.66]   
Смотреть главы в:

Радиоматериалы и радиодетали  -> Электрические процессы в диэлектриках



ПОИСК



Диэлектрик



© 2025 Mash-xxl.info Реклама на сайте